Research Article
BibTex RIS Cite

Impact of Solar Cell Infrastructures on Energy Efficiency in Power Grid Integration

Year 2024, Volume: 45 Issue: 2, 309 - 321, 30.06.2024
https://doi.org/10.17776/csj.1418035

Abstract

Photovoltaic technology harvest electrical energy by stimulating liberated electrons within the semiconductor layers using solar radiation. Photovoltaic technology produces electrical energy by collecting electrons that are liberated in a semiconductor pn-junction by solar radiation. Photovoltaic solar cells have layered semiconductor structures and this study utilised for this objective. Current researches on energy storage with solar cells, focused to optimise the utilisation of the generated energy with cell efficiency. This study offers a thorough analysis of the energy efficiency of solar cells based on their infrastructures. The study involved obtaining computational visuals and doing efficiency verification. This was done by comparing the impact of different chemical structures on energy production. The MATLAB software was used with fixed parameters and varying efficiency. The results show that the Monocrystalline N-Type IBC model exhibits the maximum efficiency in terms of PV cell structure. The MIBC structure is more efficient than polycrystalline cells and also standard monotypes with high temperatures. This allows the cell to reflect itself and passivise the cell base, resulting in a 5% or more increase in energy production. Standard monotype cell has %16.2 efficiency and Monotype IBC has %20.1 efficiency results achieved with PVsyst and Matlab softwares. The results of the calculations were applied in real time and confirmed by testing the impact of structural differences on efficiency with real climate data

Ethical Statement

The author declares that there are no conflict of interests.

References

  • [1] V. A. Milichko et al., Solar photovoltaics: current state and trends, Physics-Uspekhi, 59(8) (2016) 727–772.
  • [2] L. Scalon, Y. Vaynzof, A. F. Nogueira, C. C. Oliveira, How organic chemistry can affect perovskite photovoltaics, Cell Rep Phys Sci, 4(5) (2023) 101358.
  • [3] National Renewable Energy Laboratory, NREL-Solar Photovoltaic Technology Basics | NREL. Available: https://www.nrel.gov/research/re-photovoltaics.html, Retrieved: Jan. 10, 2024.
  • [4] E. Klugmann-Radziemska, P. Ostrowski, Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules, Renew Energy, 35(8) (2010) 1751–1759.
  • [5] E. Kobryn, S. Gusarov, K. Shankar, Multiscale modeling of active layer of hybrid organic-inorganic solar cells for photovoltaic applications by means of density functional theory and integral equation theory of molecular liquids, J. Mol. Liq., 289 (2019) 110997.
  • [6] R. Schmager, M. Langenhorst, J. Lehr, U. Lemmer, B. S. Richards, U. W. Paetzold, Methodology of energy yield modelling of perovskite-based multi-junction photovoltaics, Opt. Express, 27(8) (2019) 507.
  • [7] R. Uhl et al., Liquid-selenium-enhanced grain growth of nanoparticle precursor layers for CuInSe2 solar cell absorbers, Progress in Photovoltaics: Research and Applications, 23(9) (2015) 1110–1119.
  • [8] Kaneka Corporation Official Reports Database. Available: https://www.kaneka.co.jp/en/, Retrieved: Jan. 10, (2024).
  • [9] V. M. Andreev et al., Effect of postgrowth techniques on the characteristics of triple-junction InGaP/Ga(In)As/Ge solar cells, Semiconductors, 48(9) (2014) 1217–1221.
  • [10] N. Mohr, A. Meijer, M. A. J. Huijbregts, L. Reijnders, Environmental impact of thin-film GaInP/GaAs and multicrystalline silicon solar modules produced with solar electricity, International Journal of Life Cycle Assessment, 14(3) (2009) 225–235.
  • [11] D. V. Boguslavsky, K. S. Sharov, N. P. Sharova, Using Alternative Sources of Energy for Decarbonization: A Piece of Cake, but How to Cook This Cake?, Int. J. Environ. Res. Public Health, 19(23) (2022).
  • [12] N. J. Mohr, J. J. Schermer, M. A. J. Huijbregts, A. Meijer, L. Reijnders, Life cycle assessment of thin-film GaAs and GaInP/GaAs solar modules, Progress in Photovoltaics: Research and Applications, 15(2) (2007) 163–179.
  • [13] B. Sagyndykov, Z. K. Kalkozova, G. S. Yar-Mukhamedova, K. A. Abdullin, Fabrication of nanostructured silicon surface using selective chemical etching, Technical Physics, 62(11) (2017) 1675–1678.
  • [14] Eeles et al., High-efficiency nanoparticle solution-processed Cu(In,Ga)(S,Se)2 solar cells, IEEE J Photovolt, 8(1) (2018) 288–292.
  • [15] M. Kemell, M. Ritala, M. Leskelä, Thin film deposition methods for CuInSe2 solar cells, Critical Reviews in Solid State and Materials Sciences, 30(1) (2005) 1–31.
  • [16] P. Jackson et al., Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%, Physica Status Solidi - Rapid Research Letters, 9(1) (2015) 28–31.
  • [17] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%, Physica Status Solidi - Rapid Research Letters, 10(8) (2016) 583–586.
  • [18] H. Azimi, Y. Hou, and C. J. Brabec, Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells, Energy Environ. Sci., 7(6) (2014) 1829–1849.
  • [19] Q. Guo, G. M. Ford, H. W. Hillhouse, R. Agrawal, Sulfide nanocrystalline inks for dense Cu(In 1-xGa x)(S 1-ySe y) 2 absorber films and their photovoltaic performance, Nano Lett., 9(8) (2009) 3060–3065.
  • [20] R. Gottschalg, D. G. Infield, M. J. Kearney, Experimental study of variations of the solar spectrum of relevance to thin film solar cells, Solar Energy Materials and Solar Cells, 79(4) (2003) 527–537.
  • [21] M. Morales-Masis, S. De Wolf, R. Woods-Robinson, J. W. Ager, C. Ballif, Transparent Electrodes for Efficient Optoelectronics, Adv Electron Mater, 3(5) (2017).
  • [22] O. Hohn et al., Impact of irradiance data on the energy yield modeling of dual-junction solar module stacks for one-sun applications, IEEE J Photovolt, 11(3) (2021) 692–698.
  • [23] P. Faine, S. R. Kurtz, C. Riordan, J. M. Olson, The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells, Solar Cells, 31(3) (1991) 259–278.
  • [24] G. Nofuentes, B. García-Domingo, J. V. Muñoz, F. Chenlo, Analysis of the dependence of the spectral factor of some PV technologies on the solar spectrum distribution, Appl Energy, 113 (2014) 302–309.
  • [25] H. W. Hillhouse, M. C. Beard, Solar cells from colloidal nanocrystallines: Fundamentals, materials, devices, and economics, Curr Opin Colloid Interface Sci, 14(4) (2009) 245–259.
  • [26] K. Sarker, A. K. Azad, M. G. Rasul, A. T. Doppalapudi, Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review, Energies (Basel), 16(3) (2023) 16031556.
  • [27] J. C. Bijleveld, M. Fonrodona, M. M. Wienk, R. A. J. Janssen, Controlling morphology and photovoltaic properties by chemical structure in copolymers of cyclopentadithiophene and thiophene segments, Solar Energy Materials and Solar Cells, 94(12) (2010) 2218–2222.
  • [28] L. V. Kontrosh, V. S. Kalinovsky, A. V. Khramov, E. V. Kontrosh, Estimation of the chemical materials volumes required for the post-growth technology manufacturing InGaP/GaAs/Ge with a concentrator and planar α–Si:H/Si solar cells for 1 MW solar power plants, Clean Eng Technol, 4 (2021) 100186.
  • [29] Helbig, T. Kirchartz, R. Schaeffler, J. H. Werner, U. Rau, Quantitative electroluminescence analysis of resistive losses in Cu(In, Ga)Se2 thin-film modules, Solar Energy Materials and Solar Cells, 94(6) (2010) 979–984.
  • [30] Z. Bi and W. Ma, Calculating Structure-Performance Relationship in Organic Solar Cells, Matter, 2(1) (2020) 14–16.
  • [31] C. Ciobotaru, S. Polosan, C. C. Ciobotaru, Organometallic compounds for photovoltaic applications, Inorganica Chim Acta, 483 (2018) 448–453.
  • [32] Y. P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica, 34(1) (1967) 149–154.
  • [33] Unsal D.B., Aksoz A., Oyucu S., Guerrero J.M., Guler M. A, Comparative Study of AI Methods on Renewable Energy Prediction for Smart Grids: Case of Turkey, Sustainability, 16 (2024) 2894.
Year 2024, Volume: 45 Issue: 2, 309 - 321, 30.06.2024
https://doi.org/10.17776/csj.1418035

Abstract

References

  • [1] V. A. Milichko et al., Solar photovoltaics: current state and trends, Physics-Uspekhi, 59(8) (2016) 727–772.
  • [2] L. Scalon, Y. Vaynzof, A. F. Nogueira, C. C. Oliveira, How organic chemistry can affect perovskite photovoltaics, Cell Rep Phys Sci, 4(5) (2023) 101358.
  • [3] National Renewable Energy Laboratory, NREL-Solar Photovoltaic Technology Basics | NREL. Available: https://www.nrel.gov/research/re-photovoltaics.html, Retrieved: Jan. 10, 2024.
  • [4] E. Klugmann-Radziemska, P. Ostrowski, Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules, Renew Energy, 35(8) (2010) 1751–1759.
  • [5] E. Kobryn, S. Gusarov, K. Shankar, Multiscale modeling of active layer of hybrid organic-inorganic solar cells for photovoltaic applications by means of density functional theory and integral equation theory of molecular liquids, J. Mol. Liq., 289 (2019) 110997.
  • [6] R. Schmager, M. Langenhorst, J. Lehr, U. Lemmer, B. S. Richards, U. W. Paetzold, Methodology of energy yield modelling of perovskite-based multi-junction photovoltaics, Opt. Express, 27(8) (2019) 507.
  • [7] R. Uhl et al., Liquid-selenium-enhanced grain growth of nanoparticle precursor layers for CuInSe2 solar cell absorbers, Progress in Photovoltaics: Research and Applications, 23(9) (2015) 1110–1119.
  • [8] Kaneka Corporation Official Reports Database. Available: https://www.kaneka.co.jp/en/, Retrieved: Jan. 10, (2024).
  • [9] V. M. Andreev et al., Effect of postgrowth techniques on the characteristics of triple-junction InGaP/Ga(In)As/Ge solar cells, Semiconductors, 48(9) (2014) 1217–1221.
  • [10] N. Mohr, A. Meijer, M. A. J. Huijbregts, L. Reijnders, Environmental impact of thin-film GaInP/GaAs and multicrystalline silicon solar modules produced with solar electricity, International Journal of Life Cycle Assessment, 14(3) (2009) 225–235.
  • [11] D. V. Boguslavsky, K. S. Sharov, N. P. Sharova, Using Alternative Sources of Energy for Decarbonization: A Piece of Cake, but How to Cook This Cake?, Int. J. Environ. Res. Public Health, 19(23) (2022).
  • [12] N. J. Mohr, J. J. Schermer, M. A. J. Huijbregts, A. Meijer, L. Reijnders, Life cycle assessment of thin-film GaAs and GaInP/GaAs solar modules, Progress in Photovoltaics: Research and Applications, 15(2) (2007) 163–179.
  • [13] B. Sagyndykov, Z. K. Kalkozova, G. S. Yar-Mukhamedova, K. A. Abdullin, Fabrication of nanostructured silicon surface using selective chemical etching, Technical Physics, 62(11) (2017) 1675–1678.
  • [14] Eeles et al., High-efficiency nanoparticle solution-processed Cu(In,Ga)(S,Se)2 solar cells, IEEE J Photovolt, 8(1) (2018) 288–292.
  • [15] M. Kemell, M. Ritala, M. Leskelä, Thin film deposition methods for CuInSe2 solar cells, Critical Reviews in Solid State and Materials Sciences, 30(1) (2005) 1–31.
  • [16] P. Jackson et al., Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%, Physica Status Solidi - Rapid Research Letters, 9(1) (2015) 28–31.
  • [17] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%, Physica Status Solidi - Rapid Research Letters, 10(8) (2016) 583–586.
  • [18] H. Azimi, Y. Hou, and C. J. Brabec, Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells, Energy Environ. Sci., 7(6) (2014) 1829–1849.
  • [19] Q. Guo, G. M. Ford, H. W. Hillhouse, R. Agrawal, Sulfide nanocrystalline inks for dense Cu(In 1-xGa x)(S 1-ySe y) 2 absorber films and their photovoltaic performance, Nano Lett., 9(8) (2009) 3060–3065.
  • [20] R. Gottschalg, D. G. Infield, M. J. Kearney, Experimental study of variations of the solar spectrum of relevance to thin film solar cells, Solar Energy Materials and Solar Cells, 79(4) (2003) 527–537.
  • [21] M. Morales-Masis, S. De Wolf, R. Woods-Robinson, J. W. Ager, C. Ballif, Transparent Electrodes for Efficient Optoelectronics, Adv Electron Mater, 3(5) (2017).
  • [22] O. Hohn et al., Impact of irradiance data on the energy yield modeling of dual-junction solar module stacks for one-sun applications, IEEE J Photovolt, 11(3) (2021) 692–698.
  • [23] P. Faine, S. R. Kurtz, C. Riordan, J. M. Olson, The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells, Solar Cells, 31(3) (1991) 259–278.
  • [24] G. Nofuentes, B. García-Domingo, J. V. Muñoz, F. Chenlo, Analysis of the dependence of the spectral factor of some PV technologies on the solar spectrum distribution, Appl Energy, 113 (2014) 302–309.
  • [25] H. W. Hillhouse, M. C. Beard, Solar cells from colloidal nanocrystallines: Fundamentals, materials, devices, and economics, Curr Opin Colloid Interface Sci, 14(4) (2009) 245–259.
  • [26] K. Sarker, A. K. Azad, M. G. Rasul, A. T. Doppalapudi, Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review, Energies (Basel), 16(3) (2023) 16031556.
  • [27] J. C. Bijleveld, M. Fonrodona, M. M. Wienk, R. A. J. Janssen, Controlling morphology and photovoltaic properties by chemical structure in copolymers of cyclopentadithiophene and thiophene segments, Solar Energy Materials and Solar Cells, 94(12) (2010) 2218–2222.
  • [28] L. V. Kontrosh, V. S. Kalinovsky, A. V. Khramov, E. V. Kontrosh, Estimation of the chemical materials volumes required for the post-growth technology manufacturing InGaP/GaAs/Ge with a concentrator and planar α–Si:H/Si solar cells for 1 MW solar power plants, Clean Eng Technol, 4 (2021) 100186.
  • [29] Helbig, T. Kirchartz, R. Schaeffler, J. H. Werner, U. Rau, Quantitative electroluminescence analysis of resistive losses in Cu(In, Ga)Se2 thin-film modules, Solar Energy Materials and Solar Cells, 94(6) (2010) 979–984.
  • [30] Z. Bi and W. Ma, Calculating Structure-Performance Relationship in Organic Solar Cells, Matter, 2(1) (2020) 14–16.
  • [31] C. Ciobotaru, S. Polosan, C. C. Ciobotaru, Organometallic compounds for photovoltaic applications, Inorganica Chim Acta, 483 (2018) 448–453.
  • [32] Y. P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica, 34(1) (1967) 149–154.
  • [33] Unsal D.B., Aksoz A., Oyucu S., Guerrero J.M., Guler M. A, Comparative Study of AI Methods on Renewable Energy Prediction for Smart Grids: Case of Turkey, Sustainability, 16 (2024) 2894.
There are 33 citations in total.

Details

Primary Language English
Subjects Organic Chemical Synthesis
Journal Section Natural Sciences
Authors

Derya Betul Unsal 0000-0002-7657-7581

Publication Date June 30, 2024
Submission Date January 11, 2024
Acceptance Date June 24, 2024
Published in Issue Year 2024Volume: 45 Issue: 2

Cite

APA Unsal, D. B. (2024). Impact of Solar Cell Infrastructures on Energy Efficiency in Power Grid Integration. Cumhuriyet Science Journal, 45(2), 309-321. https://doi.org/10.17776/csj.1418035