Research Article
BibTex RIS Cite

Treatment of Sugar Industry Wastewater via Fenton Oxidation with Zero-Valent Iron

Year 2024, Volume: 45 Issue: 1, 100 - 104, 28.03.2024
https://doi.org/10.17776/csj.1328817

Abstract

The sugar industry is a significant contributor to wastewater production, primarily due to its substantial water usage. The treatment and reuse of this wastewater have become pressing concerns. In the present study, sugar industry wastewater was treated via Fenton oxidation using zero-valent iron (ZVI). The study focused on assessing the impact of key reaction parameters, namely pH, ZVI amount, [H2O2]0 on the removal of TOC. Optimal reaction conditions for the Fenton oxidation process were identified, with a pH of 3.5, 2 g/L of ZVI, and 4 mM of H2O2, resulting in nearly 65% of TOC removal. The kinetic study revealed that the observed reaction adhered to a second-order kinetic reaction model. Furthermore, the activation energy for this observed reaction was determined as 49.14 kJ/mol. These findings suggest that Fenton oxidation, utilizing ZVI, holds promise as an effective method for treating wastewater originating from the sugar industry.

Supporting Institution

-

Project Number

-

Thanks

I would like to thank Assoc. Prof. Dr. Aslı Yüksel Özşen and Assoc. Prof. Dr. Gülin Ersöz for allowing me to use their laboratory infrastructure to carry out this study.

References

  • [1] Ashrafi O., Yerushalmi L., Haghighat F. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission, J. Environ. Manage., 158 (2015) 146-157.
  • [2] Kishor R., Purchase D., Saratale G. D., Saratale R. G., Ferreira L. F. R., Bilal M., Chandra R., Bharagava R. N. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety, J. Environ. Che. Eng., 9 (2021) 105012-105029.
  • [3] Verma S., Kumar P., Srivastava V. C., Štangar U. L., Application of Advanced Oxidation Processes (AOPs) for the Treatment of Petrochemical Industry Wastewater In: Roy, S., Garg, A., Garg, S., Tran, T.A. (eds) Advanced Industrial Wastewater Treatment and Reclamation of Water, Environ. Sci. Eng., (2021) 103-128.
  • [4] Rakhmania; Kamyab H., Yuzir M. A., Abdullah N., Quan L. M., Riyadi F. A., Marzouki R., Recent Applications of the Electrocoagulation Process on Agro-Based Industrial Wastewater: A Review, Sustainability, 14 (2022) 1985-1204.
  • [5] Raji M., Mirbagheri S. A., Ye F., Dutta J., Nano zero-valent iron on activated carbon cloth support as Fenton-like catalyst for efficient color and COD removal from melanoidin wastewater, Chemosphere, 263 (2021) 127945-127954.
  • [6] Xie S., Su J., Zhao J., Yang H., Qian H., An amorphous zero-valent iron decorated by Fe3O4 significantly improves the Fenton-like reaction, J. Alloys Compd., 929 (2022) 167306-167315.
  • [7] Kallel M., Belaid C., Mechichi T., Ksibi M., Elleuch B., Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron, Che. Eng. J., 150 (2009) 391-395.
  • [8] Kallel M., Belaid C., Boussahel R., Ksibi M., Montiel A., Elleuch B., Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen peroxide. J. Hazard. Mater., 163 (2009) 550-554.
  • [9] Furia F., Minella M., Gosetti F., Turci F., Sabatino R., Di Cesare A., Corno G., Vione D., Elimination from wastewater of antibiotics reserved for hospital settings, with a Fenton process based on zero-valent iron, Chemosphere, 283 (2021) 131170-131169.
  • [10] Çalık Ç., Çiftçi D. İ., Comparison of kinetics and costs of Fenton and photo-Fenton processes used for the treatment of a textile industry wastewater, J. Environ. Manage., 304 (2022) 114234-114239.
  • [11] www.sekerkurumu.gov.tr (access date: 12.12.2022)
  • [12] Kaya Ş., Asçı Y., Application of Combined Ultrasound and Fenton Reagent in Sugar Industry Wastewater Treatment, pp. 273-283. Atik, A. ed. 2019. Research & Reviews in Engineering. Gece Kitaplığı, Turkey, 361s.
  • [13] Kushwaha J. P., A review on sugar industry wastewater: sources, treatment technologies, and reuse, Desalin. Water Treat., 53(2) (2013) 309-318.
  • [14] Orak C., Yüksel A., Photocatalytic hydrogen energy evolution from sugar beet wastewater, ChemistrySelect, 6(43) (2021) 12266-12275.
  • [15] Orak C., Öcal B., Yüksel A., Treatment of Sugar Industry Wastewater by Using Subcritical Water as a Reaction Media, ChemistrySelect, 8(1) (2023), e202203300.
  • [16] Rezaei F., Vione D., Effect of pH on Zero Valent Iron Performance in Heterogeneous Fenton and Fenton-Like Processes: A Review, Molecules, 23 (2018) 3127-3154.
  • [17] Donadelli J. A., Carlos L., Arques A., Einschlag F. S. G., Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways, App. Catal. B-Environ., 231 (2018) 51-61.
  • [18] Ramirez J. H., Maldonado-Hódar F. J., Pérez-Cadenas A. F., Moreno-Castilla C., Costa C. A., Maderina L. M., Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts, App. Catal. B-Environ., 75 (2007) 312–323.
  • [19] Orak C., Atalay S., Ersöz G., Photocatalytic and photo-Fenton-like degradation of methylparaben on monolith-supported perovskite-type catalysts, Sep. Sci. Technol., 52(7) (2017) 1310-1320.
  • [20] Li W., Wang Y., Irini A., Effect of pH and H2O2 dosage on catechol oxidation in nano-Fe3O4 catalyzing UV–Fenton and identification of reactive oxygen species, Che. Eng. J., 244 (2014) 1-8.
  • [21] Hwang S., Huling S. G., Ko S., Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers, Chemosphere, 78 (2010) 563-568.
  • [22] Jiang C., Pang S., Ouyang F., Ma J., Jiang J., A new insight into Fenton and Fenton-like processes for water treatment, J. Hazard. Mater., 174 (2010) 813-817.
  • [23] Razas O., Vidal C., Baeza C., Jardim W. F., Rossner A., Mansilla H. D., Organic micropollutants (OMPs) in natural waters: Oxidation by UV/H2O2 treatment and toxicity assessment, Water Res., 98 (2016) 109-118.
  • [24] de Oliveira T. D., Martini W. S., Santos M. D. R., Matos M. A. C., da Rocha L. L., Caffeine Oxidation in Water by Fenton and Fenton-Like Processes: Effects of Inorganic Anions and Ecotoxicological Evaluation on Aquatic Organisms, J. Brazil Chem. Soc., 26(1) (2015) 178-184.
  • [25] Guedes A. M. F. M., Madeira L. M. P., Boaventura R. A. R., Costa C. A. V., Fenton oxidation of cork cooking wastewater—overall kinetic analysis, Water Res., 37 (2003) 3061-3069.
  • [26] Lucas M. S., Peres J. A., Removal of COD from olive mill wastewater by Fenton’s reagent: Kinetic study, J. Hazard. Mater., 168 (2009) 1253-1259.
Year 2024, Volume: 45 Issue: 1, 100 - 104, 28.03.2024
https://doi.org/10.17776/csj.1328817

Abstract

Project Number

-

References

  • [1] Ashrafi O., Yerushalmi L., Haghighat F. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission, J. Environ. Manage., 158 (2015) 146-157.
  • [2] Kishor R., Purchase D., Saratale G. D., Saratale R. G., Ferreira L. F. R., Bilal M., Chandra R., Bharagava R. N. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety, J. Environ. Che. Eng., 9 (2021) 105012-105029.
  • [3] Verma S., Kumar P., Srivastava V. C., Štangar U. L., Application of Advanced Oxidation Processes (AOPs) for the Treatment of Petrochemical Industry Wastewater In: Roy, S., Garg, A., Garg, S., Tran, T.A. (eds) Advanced Industrial Wastewater Treatment and Reclamation of Water, Environ. Sci. Eng., (2021) 103-128.
  • [4] Rakhmania; Kamyab H., Yuzir M. A., Abdullah N., Quan L. M., Riyadi F. A., Marzouki R., Recent Applications of the Electrocoagulation Process on Agro-Based Industrial Wastewater: A Review, Sustainability, 14 (2022) 1985-1204.
  • [5] Raji M., Mirbagheri S. A., Ye F., Dutta J., Nano zero-valent iron on activated carbon cloth support as Fenton-like catalyst for efficient color and COD removal from melanoidin wastewater, Chemosphere, 263 (2021) 127945-127954.
  • [6] Xie S., Su J., Zhao J., Yang H., Qian H., An amorphous zero-valent iron decorated by Fe3O4 significantly improves the Fenton-like reaction, J. Alloys Compd., 929 (2022) 167306-167315.
  • [7] Kallel M., Belaid C., Mechichi T., Ksibi M., Elleuch B., Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron, Che. Eng. J., 150 (2009) 391-395.
  • [8] Kallel M., Belaid C., Boussahel R., Ksibi M., Montiel A., Elleuch B., Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen peroxide. J. Hazard. Mater., 163 (2009) 550-554.
  • [9] Furia F., Minella M., Gosetti F., Turci F., Sabatino R., Di Cesare A., Corno G., Vione D., Elimination from wastewater of antibiotics reserved for hospital settings, with a Fenton process based on zero-valent iron, Chemosphere, 283 (2021) 131170-131169.
  • [10] Çalık Ç., Çiftçi D. İ., Comparison of kinetics and costs of Fenton and photo-Fenton processes used for the treatment of a textile industry wastewater, J. Environ. Manage., 304 (2022) 114234-114239.
  • [11] www.sekerkurumu.gov.tr (access date: 12.12.2022)
  • [12] Kaya Ş., Asçı Y., Application of Combined Ultrasound and Fenton Reagent in Sugar Industry Wastewater Treatment, pp. 273-283. Atik, A. ed. 2019. Research & Reviews in Engineering. Gece Kitaplığı, Turkey, 361s.
  • [13] Kushwaha J. P., A review on sugar industry wastewater: sources, treatment technologies, and reuse, Desalin. Water Treat., 53(2) (2013) 309-318.
  • [14] Orak C., Yüksel A., Photocatalytic hydrogen energy evolution from sugar beet wastewater, ChemistrySelect, 6(43) (2021) 12266-12275.
  • [15] Orak C., Öcal B., Yüksel A., Treatment of Sugar Industry Wastewater by Using Subcritical Water as a Reaction Media, ChemistrySelect, 8(1) (2023), e202203300.
  • [16] Rezaei F., Vione D., Effect of pH on Zero Valent Iron Performance in Heterogeneous Fenton and Fenton-Like Processes: A Review, Molecules, 23 (2018) 3127-3154.
  • [17] Donadelli J. A., Carlos L., Arques A., Einschlag F. S. G., Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways, App. Catal. B-Environ., 231 (2018) 51-61.
  • [18] Ramirez J. H., Maldonado-Hódar F. J., Pérez-Cadenas A. F., Moreno-Castilla C., Costa C. A., Maderina L. M., Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts, App. Catal. B-Environ., 75 (2007) 312–323.
  • [19] Orak C., Atalay S., Ersöz G., Photocatalytic and photo-Fenton-like degradation of methylparaben on monolith-supported perovskite-type catalysts, Sep. Sci. Technol., 52(7) (2017) 1310-1320.
  • [20] Li W., Wang Y., Irini A., Effect of pH and H2O2 dosage on catechol oxidation in nano-Fe3O4 catalyzing UV–Fenton and identification of reactive oxygen species, Che. Eng. J., 244 (2014) 1-8.
  • [21] Hwang S., Huling S. G., Ko S., Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers, Chemosphere, 78 (2010) 563-568.
  • [22] Jiang C., Pang S., Ouyang F., Ma J., Jiang J., A new insight into Fenton and Fenton-like processes for water treatment, J. Hazard. Mater., 174 (2010) 813-817.
  • [23] Razas O., Vidal C., Baeza C., Jardim W. F., Rossner A., Mansilla H. D., Organic micropollutants (OMPs) in natural waters: Oxidation by UV/H2O2 treatment and toxicity assessment, Water Res., 98 (2016) 109-118.
  • [24] de Oliveira T. D., Martini W. S., Santos M. D. R., Matos M. A. C., da Rocha L. L., Caffeine Oxidation in Water by Fenton and Fenton-Like Processes: Effects of Inorganic Anions and Ecotoxicological Evaluation on Aquatic Organisms, J. Brazil Chem. Soc., 26(1) (2015) 178-184.
  • [25] Guedes A. M. F. M., Madeira L. M. P., Boaventura R. A. R., Costa C. A. V., Fenton oxidation of cork cooking wastewater—overall kinetic analysis, Water Res., 37 (2003) 3061-3069.
  • [26] Lucas M. S., Peres J. A., Removal of COD from olive mill wastewater by Fenton’s reagent: Kinetic study, J. Hazard. Mater., 168 (2009) 1253-1259.
There are 26 citations in total.

Details

Primary Language English
Subjects Separation Science, Free Radical Chemistry
Journal Section Natural Sciences
Authors

Ceren Orak 0000-0001-8864-5943

Project Number -
Publication Date March 28, 2024
Submission Date July 17, 2023
Acceptance Date January 2, 2024
Published in Issue Year 2024Volume: 45 Issue: 1

Cite

APA Orak, C. (2024). Treatment of Sugar Industry Wastewater via Fenton Oxidation with Zero-Valent Iron. Cumhuriyet Science Journal, 45(1), 100-104. https://doi.org/10.17776/csj.1328817