Research Article
BibTex RIS Cite

Subdivisions of the Spectra for Difference Operator Δ^m over the Sequence Space l_p

Year 2025, Volume: 46 Issue: 3, 590 - 594, 30.09.2025

Abstract

This study focuses on the higher-order difference operator Δ^m, which is defined via an (m+1)-band matrix and serves as a generalization of classical operators such as ∆, Δ^2, B(r,s) and B(r,s,t). Within the framework of the sequence space l_p for 1

References

  • [1]      Altay, B., Başar, F., On the fine spectrum of the difference operator on and , Inf. Sci., 168 (2004) 217–224.
  • [2]     Altay, B., Başar, F., The fine spectrum and the matrix domain of the difference operator on the sequence space , , Commun. Math. Anal., 2(2) (2007) 1–11.
  • [3]     Altay, B., Başar, F., On the fine spectrum of the generalized difference operator over the sequence spaces and , Int. J. Math. Math. Sci., 18 (2005) 3005–3013.
  • [4]     Akhmedov, A.M., Başar, F., On the fine spectra of the difference operator over the sequence space , Demonstr. Math., 39(3) (2006) 586–595.
  • [5]     Akhmedov, A.M., Başar, F., On the fine spectra of the difference operator over the sequence space, , Acta. Math. Sin. (Engl. Ser.), 23(10) (2007) 1757–1768.
  • [6]     Durna, N., Yıldırım, M., Kılıç, R., Partition of the spectra for the generalized difference operator on the sequence space , Cumhuriyet Sci. J., 39(1) (2018) 7–15.
  • [7]    Srivastava, P.D., Kumar, S., On the fine spectrum of the generalized difference operator over the sequence space, Commun. Math. Anal., 6(1) (2009) 8–21.
  • [8]   Srivastava, P.D., Kumar, S., Fine spectrum of the generalized difference operator on sequence space , Thai. J. Math., 8(2) (2010) 221–233.
  • [9]   Akhmedov, A.M., El-Shabrawy, S.R., On the fine spectrum of the operator over the sequence space, Comput. Math. Appl., 61 (2011) 2994–3002.
  • [10]   Dutta, S., Baliarsingh, P., On the fine spectra of the generalized difference operator on the sequence space, Appl. Math. Comput., 219 (2012) 1776–1784.
  • [11]   Dutta, S., Baliarsingh, P., On the spectrum of order generalized difference operator over the sequence space , Bol. Soc. Paran. Mat., 31(2) (2013) 235–244.
  • [12]    Durna, N., Yıldırım, M., Ünal, Ç., On the fine spectrum of generalized lower triangular double band matrices Over The Sequence Space, Cumhuriyet Sci. J., 37(3) (2016) 281–291.
  • [13]    Durna, N., Subdivision of spectra for some lower triangular doule-band matrices as operators on , Ukrain. Mat. Zh., 70(7) (2018) 913–922.
  • [14]    Durna, N., Kılıç, R., On the spectrum and fine spectrum of the upper triangular double band matrix over the sequence space , Honam Mathematical J., 45(4) (2023) 598-609.
  • [15]    Durna, N., Mursaleen, M. and Kılıç, R., Spectra and fine spectra of the generalized upper difference operator with triple repetition on the Hahn sequence space, Mathematica Slovaca, 72(3) (2022) 719-736.
  • [16]   Durna, N., Spectra and fine spectra of the upper triangular band matrix on the Hahn sequence space, Mathematical Communications, 25(1) (2020) 49-66.
  • [17]    Rani, J., Patra, A., Srivastava, P. D., Spectrum and Fine Spectrum of Band Matrices Generated by Oscillatory Sequences, Operators and Matrices, 18(4) (2024) 805-831.
  • [18]   Bilgiç, H., Furkan, H., On the fine spectrum of the generalized difference operator over the sequence spaces and , Nonlinear Anal., 68(3) (2008) 499-506.
  • [19]   Furkan, H., Bilgiç, H., Altay, B., On the fine spectrum of the operator over the sequence space and , Comput. Math. Appl., 60(7) (2010) 897–908.
  • [20]   Baliarsingh, P., Mursalen, M., Rakocevic, V., A survey on the spectra of the difference operators over the Banach space , RACSAM, 115(57) (2021) 1–17.
  • [21]    Taylor, R. B., Introduction to functional analysis Wiley, New York, (1980).
  • [22]    Wilansky, A., Summability Through Functional Analysis, North-Holland Mathematics Studies, Amsterdam, (1984).
  • [23]    Goldberg, S., Unbounded Linear Operators, McGraw Hill, New York (1966).
  • [24]    Tuğutlu M., Durna N., On the Spectrum of the difference operator over the sequence space , 1 st ICSAR, Konya, Turkey, 2022,362-366.
  • [25]    Appell, J., Pascale, E.D., Vignoli, A., Nonlinear Spectral Theory, Walter de Gruyter, Berlin New York, (2004).
There are 25 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Natural Sciences
Authors

Rabia Kiliç 0000-0002-3415-1945

Publication Date September 30, 2025
Submission Date July 26, 2025
Acceptance Date September 15, 2025
Published in Issue Year 2025 Volume: 46 Issue: 3

Cite

APA Kiliç, R. (2025). Subdivisions of the Spectra for Difference Operator Δ^m over the Sequence Space l_p. Cumhuriyet Science Journal, 46(3), 590-594.