Research Article
BibTex RIS Cite

Electric Field and Polarizer Angle-Dependent Optical Response of a Planar Liquid Crystal Cell Using Monte Carlo Simulations and Mueller matrix Analysis

Year 2025, Volume: 46 Issue: 3, 653 - 657, 30.09.2025
https://doi.org/10.17776/csj.1739879

Abstract

We investigate the optical response of a planar nematic liquid crystal (LC) cell under varying electric fields and polarizer orientations using a combination of Monte Carlo (MC) simulations and Mueller matrix formalism. The LC molecular configurations are generated using a Lebwohl–Lasher-type lattice model with periodic boundary conditions, electric field coupling, and surface anchoring interactions. These configurations are incorporated into a Mueller matrix framework to calculate the spectrally dependent transmittance through a crossed-polarizer setup for three primary wavelengths: red (λR=700 nm), green (λG=546.1 nm), and blue (λB=435.8 nm), corresponding to simply the RGB color channels, respectively. By systematically varying the polarizer azimuthal angle (𝛼=0⁰, -22.5⁰, and -45⁰), we demonstrate that both the transmitted intensities and the resulting color maps are strongly modulated by changes in electric field and crossed polarizer’s azimuthal angle. To visualize these effects, RGB-based color maps are constructed, providing an intuitive representation of the optical response as a function of system parameters. The results reveal a strong dependence of output intensity and color on the LC molecular orientation, confirming the capability of this simulation-based approach for designing tunable LC optical elements and display technologies.

References

  • [1] Andrienko D., Introduction to liquid crystals, Journal of Molecular Liquids, 267 (2018) 520-541.
  • [2] García-García A., VergazR., Algorri J. F., Quintana X., Otón J. M., Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes, Beilstein Journal of Nanotechnology, 6 (1) (2015), 396-403.
  • [3] Jayasri D., Satyavathi N., Sastry V. S. S., Murthy K. P. N., Phase transition in liquid crystal elastomer - a Monte Carlo study employing non-Boltzmann sampling, Physica A, 388 (4) (2006) 13-13.
  • [4] Lagerwall J. P. F., Scalia G., A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology, Current Applied Physics, 12 (6) 1387-1412.
  • [5] Woltman S. J., Jay G. D., Crawford G. P., Liquid-crystal materials find a new order in biomedical applications, Nature Materials, 6 (12) (2007) 929-938.
  • [6] Nahum G., Imaging spectroscopy using tunable filters: a review, Proc.SPIE, 4056 (2000) 50-64.
  • [7] Emül Y, Polat Ö., San S. E., Kayacan Ö. Özbek H., Investigating electro-optical properties of a nematic liquid crystal cell with planar anchoring boundary condition for various thicknesses: A Monte Carlo study, Optical Materials, 36 (8) (2014) 1373-1377.
  • [8] Emül Y., Monte carlo simulations for tuning optical properties in a two-stage liquid crystal retarder system via Mueller matrix method, Liquid Crystals, 52(3-4) (2024) 212-219.
  • [9] Lebwohl P. A., Lasher G., Nematic-Liquid-Crystal Order---A Monte Carlo Calculation, Phys. Rev. A, 6 (1) (1972), 426-429.
  • [10] Zhang Z., Mouritsen O. G., Zuckermann M. J., Weak first-order orientational transition in the Lebwohl-Lasher model for liquid crystals, Physical Review Letters, 69 (19) (1992) 2803-2806.
  • [11] Rapini A., Papoular M., Distorsion d'une lamelle nématique sous champ magnétique conditions d'ancrage aux parois, J. Phys. Colloques, 30 (C4) (1969) C4-54 - C4-56.
  • [12] Rapini A., Papoular M., Ondes de surface dans un cristal liquide nématique, J. Phys. Colloques, 31 (C1) (1970) C1-27 - C1-28.
  • [13] Pawlik G., Mitus A. C., Karpinski P., Miniewicz A., Laser light-induced molecular reorientation in 90° twisted nematic liquid crystal: Classic approach, Monte Carlo modeling and experiment, Optical Materials, 34 (10) (2012) 1697-1703.
  • [14] Xu F., Kitzerow H. S., Crooker P. P., Electric-field effects on nematic droplets with negative dielectric anisotropy, Phys. Rev. A, 46 (10) (1992) 6535–6540.
  • [15] Goldstein D. H., Polarized light, CRC Press, (2011) 50-134.
  • [16] Zia A., Saeed S., Man T., Liu H., Chen C. X., Wan Y., Next-generation interfaces: integrating liquid crystal technologies in augmented and virtual reality - A review, Liquid Crystals Reviews, 12(1) (2024), 30–56.
There are 16 citations in total.

Details

Primary Language English
Subjects Atomic and Molecular Physics, Classical and Physical Optics
Journal Section Natural Sciences
Authors

Yakup Emül 0000-0002-9255-4101

Publication Date September 30, 2025
Submission Date July 11, 2025
Acceptance Date September 15, 2025
Published in Issue Year 2025 Volume: 46 Issue: 3

Cite

APA Emül, Y. (2025). Electric Field and Polarizer Angle-Dependent Optical Response of a Planar Liquid Crystal Cell Using Monte Carlo Simulations and Mueller matrix Analysis. Cumhuriyet Science Journal, 46(3), 653-657. https://doi.org/10.17776/csj.1739879