Research Article
BibTex RIS Cite

Neutron induced fission cross section calculation for tungsten, tantalum, bismuth and lead nuclei using CEM03.03 and TALYS

Year 2025, Volume: 46 Issue: 3, 658 - 667, 30.09.2025
https://doi.org/10.17776/csj.1738296

Abstract

[1] I. A. E. AGENCY, Climate Change and Nuclear Power 2020, Climate Change and Nuclear Power 2020 1 (2020).
[2] M. D. Mathew, Nuclear Energy: A Pathway towards Mitigation of Global Warming, Progress in Nuclear Energy.
[3] N. Energy Agency, Accelerator-Driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles: A Comparative Study, 2002.
[4] V. V. Kumar and K. Katovsky, A Comprehensive Review of Developments of Accelerator Driven Subcritical Systems and Future Requirements, in (2020 21st International Scientific Conference on Electric Power Engineering (EPE) (Prague, Czech Republic: IEEE), 1–6., 2020).
[5] R. Luo, S. T. Revankar, D. Zhang, and F. Zhao, Inherent Safety Characteristics of Lead Bismuth Eutectic-Cooled Accelerator Driven Subcritical Systems, Front Energy Res 10, (2022).
[6] W. Maschek et al., Accelerator driven systems for transmutation: Fuel development, design and safety, Progress in Nuclear Energy 50, 333 (2008).
[7] A. J. Koning, S. Hilaire, and S. Goriely, Global and local level density models, Nucl Phys A 810, 13 (2008).
[8] A. Koning, S. Hilaire, and S. Goriely, TALYS-1.96/2.0 Simulation of Nuclear Reactions, 2021.
[9] A. Gilbert and A. G. W. Cameron, A Composite Nuclear-Level Density Formula With Shell Corrections, Can J Phys 43, 1446 (1965).
[10] P. Demetriou and S. Goriely, Microscopic nuclear level densities for practical applications, Nucl Phys A 695, 95 (2001).
[11] W. Dilg, W. Schantl, H. Vonach, and M. Uhl, Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250, Nucl Phys A 217, 269 (1973).
[12] M. K. Grossjean and H. Feldmeier, Level density of a Fermi gas with pairing interactions, Nucl Phys A 444, 113 (1985).
[13] A. V. Ignatyuk, G. N. Smirenkin, and A. S. Tishin, Phenomenological description of energy dependence of the level density parameter, Yadernaya Fizika 21, 485 (1975).
[14] A. V Ignatyuk, K. K. Istekov, and G. N. Smirenkin, Role of collective effects in the systematics of nuclear level densities, Sov. J. Nucl. Phys. (Engl. Transl.); (United States) 29:4, (1979).
[15] A. V. Ignatyuk, J. L. Weil, S. Raman, and S. Kahane, Density of discrete levels in 116SnPhys Rev C 47, 1504 (1993).
[16] H. Baba, A shell-model nuclear level density, Nuclear Physics, Section A 159, 625 (1970).
[17] A. V. Ignatyuk, J. L. Weil, S. Raman, and S. Kahane, Density of discrete levels in 116Sn, Phys Rev C 47, 1504 (1993).
[18] S. G. Mashnik and A. J. Sierk, CEM03.03 User Manual and the MCNP6 Code Package, n.d.
[19] S. G. Mashnik, A. J. Sierk, K. K. Gudima, and M. I. Baznat, The MCNP6 Event Generator CEM03.02: Lessons Learned from the Intercomparison, 2010.
[20] S. G. Mashnik and A. J. Sierk, Recent developments of the cascade-exciton model of nuclear reactions, J Nucl Sci Technol 39, 720 (2002).
[21] A. J. Sierk and S. G. Mashnik, Modeling Fission in the Cascade-Exciton Model, (1998).
[22] A. S. Iljinov, M. V. Mebel, N. Bianchi, E. De Sanctis, C. Guaraldo, V. Lucherini, V. Muccifora, E. Polli, A. R. Reolon, and P. Rossi, Phenomenological statistical analysis of level densities, decay widths and lifetimes of excited nuclei, Nucl Phys A 543, 517 (1992).
[23] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, Nuclear Ground-State Masses and Deformations, At Data Nucl Data Tables 59, 185 (1995).
[24] P. Möller, J. R. Nix, and K. L. Kratz, Nucleat Properties for Astrophysical and Radioactive-ion-beam Applications, Atom.Data Nucl.Data Tabl. 66, 131 (1997).

References

  • [1] I.A.E. Agency, Climate Change and Nuclear Power 2020, Climate Change and Nuclear Power, 1 (2020).
  • [2] Mathew M.D., Nuclear Energy: A Pathway towards Mitigation of Global Warming, Prog. Nucl. Energy.
  • [3] Nuclear Energy Agency, Accelerator-Driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles: A Comparative Study. Available at: https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/nea3109-ads_fr.pdf. Retrieved July 28, 2025.
  • [4] Kumar V.V., Katovsky K., A Comprehensive Review of Developments of Accelerator Driven Subcritical Systems and Future Requirements, in: 2020 21st International Scientific Conference on Electric Power Engineering (EPE), Prague, (2020) 1-6.
  • [5] Luo R., Revankar S.T., Zhang D., Zhao F., Inherent Safety Characteristics of Lead Bismuth Eutectic-Cooled Accelerator Driven Subcritical Systems, Front. Energy Res., 10 (2022).
  • [6] Maschek W., Granget G., Kondo M., Sugimoto M., Accelerator driven systems for transmutation: Fuel development, design and safety, Prog. Nucl. Energy, 50 (2008) 333-339.
  • [7] Koning A.J., Hilaire S., Goriely S., Global and local level density models, Nucl. Phys. A, 810 (2008) 13-76.
  • [8] Koning A.J., Hilaire S., Goriely S., TALYS-1.96/2.0 Simulation of Nuclear Reactions, 2021.
  • [9] Gilbert A., Cameron A.G.W., A Composite Nuclear-Level Density Formula With Shell Corrections, Can. J. Phys., 43 (1965) 1446-1496.
  • [10] Demetriou P., Goriely S., Microscopic nuclear level densities for practical applications, Nucl. Phys. A, 695 (2001) 95-108.
  • [11] Dilg W., Schantl W., Vonach H., Uhl M., Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250, Nucl. Phys. A, 217 (1973) 269-298.
  • [12] Grossjean M.K., Feldmeier H., Level density of a Fermi gas with pairing interactions, Nucl. Phys. A, 444 (1985) 113-132.
  • [13] Ignatyuk A.V., Smirenkin G.N., Tishin A.S., Phenomenological description of energy dependence of the level density parameter, Yad. Fiz., 21 (1975) 485-495.
  • [14] Ignatyuk A.V., Istekov K.K., Smirenkin G.N., Role of collective effects in the systematics of nuclear level densities, Sov. J. Nucl. Phys., 29 (1979).
  • [15] Ignatyuk A.V., Weil J.L., Raman S., Kahane S., Density of discrete levels in 116Sn, Phys. Rev. C, 47 (1993) 1504-1510.
  • [16] Baba H., A shell-model nuclear level density, Nucl. Phys. A, 159 (1970) 625-634.
  • [17] Ignatyuk A.V., Weil J.L., Raman S., Kahane S., Density of discrete levels in 116Sn, Phys. Rev. C, 47 (1993) 1504-1510.
  • [18] Mashnik S.G., Sierk A.J., CEM03.03 User Manual and the MCNP6 Code Package, Los Alamos National Laboratory, (n.d.).
  • [19] Mashnik S.G., Sierk A.J., Gudima K.K., Baznat M.I., The MCNP6 Event Generator CEM03.02: Lessons Learned from the Intercomparison, Los Alamos National Laboratory, (2010).
  • [20]Mashnik S.G., Sierk A.J., Recent developments of the cascade-exciton model of nuclear reactions, J. Nucl. Sci. Technol., 39 (2002) 720-722.
  • [21] Sierk A.J., Mashnik S.G., Modeling Fission in the Cascade-Exciton Model, Los Alamos National Laboratory, (1998).
  • [22] Iljinov A.S., Mebel M.V., Bianchi N., De Sanctis E., Guaraldo C., Lucherini V., Muccifora V., Polli E., Reolon A.R., Rossi P., Phenomenological statistical analysis of level densities, decay widths and lifetimes of excited nuclei, Nucl. Phys. A, 543 (1992) 517-557.
  • [23]Möller P., Nix J.R., Myers W.D., Swiatecki W.J., Nuclear Ground-State Masses and Deformations, At. Data Nucl. Data Tables, 59 (1995) 185-381.
  • [24]Möller P., Nix J.R., Myers W.D., Swiatecki W.J., Nuclear Ground-State Masses and Deformations, At. Data Nucl. Data Tables, 59 (1995) 185-381.Möller P., Nix J.R., Kratz K.L., Nuclear properties for astrophysical and radioactive-ion-beam applications, At. Data Nucl. Data Tables, 66 (1997) 131-343.
There are 24 citations in total.

Details

Primary Language English
Subjects Nuclear Physics
Journal Section Natural Sciences
Authors

Murat Dağ 0000-0002-0503-6067

Publication Date September 30, 2025
Submission Date July 9, 2025
Acceptance Date September 15, 2025
Published in Issue Year 2025 Volume: 46 Issue: 3

Cite

APA Dağ, M. (2025). Neutron induced fission cross section calculation for tungsten, tantalum, bismuth and lead nuclei using CEM03.03 and TALYS. Cumhuriyet Science Journal, 46(3), 658-667. https://doi.org/10.17776/csj.1738296