[1] I. A. E. AGENCY, Climate Change and Nuclear Power 2020, Climate Change and Nuclear Power 2020 1 (2020).
[2] M. D. Mathew, Nuclear Energy: A Pathway towards Mitigation of Global Warming, Progress in Nuclear Energy.
[3] N. Energy Agency, Accelerator-Driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles: A Comparative Study, 2002.
[4] V. V. Kumar and K. Katovsky, A Comprehensive Review of Developments of Accelerator Driven Subcritical Systems and Future Requirements, in (2020 21st International Scientific Conference on Electric Power Engineering (EPE) (Prague, Czech Republic: IEEE), 1–6., 2020).
[5] R. Luo, S. T. Revankar, D. Zhang, and F. Zhao, Inherent Safety Characteristics of Lead Bismuth Eutectic-Cooled Accelerator Driven Subcritical Systems, Front Energy Res 10, (2022).
[6] W. Maschek et al., Accelerator driven systems for transmutation: Fuel development, design and safety, Progress in Nuclear Energy 50, 333 (2008).
[7] A. J. Koning, S. Hilaire, and S. Goriely, Global and local level density models, Nucl Phys A 810, 13 (2008).
[8] A. Koning, S. Hilaire, and S. Goriely, TALYS-1.96/2.0 Simulation of Nuclear Reactions, 2021.
[9] A. Gilbert and A. G. W. Cameron, A Composite Nuclear-Level Density Formula With Shell Corrections, Can J Phys 43, 1446 (1965).
[10] P. Demetriou and S. Goriely, Microscopic nuclear level densities for practical applications, Nucl Phys A 695, 95 (2001).
[11] W. Dilg, W. Schantl, H. Vonach, and M. Uhl, Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250, Nucl Phys A 217, 269 (1973).
[12] M. K. Grossjean and H. Feldmeier, Level density of a Fermi gas with pairing interactions, Nucl Phys A 444, 113 (1985).
[13] A. V. Ignatyuk, G. N. Smirenkin, and A. S. Tishin, Phenomenological description of energy dependence of the level density parameter, Yadernaya Fizika 21, 485 (1975).
[14] A. V Ignatyuk, K. K. Istekov, and G. N. Smirenkin, Role of collective effects in the systematics of nuclear level densities, Sov. J. Nucl. Phys. (Engl. Transl.); (United States) 29:4, (1979).
[15] A. V. Ignatyuk, J. L. Weil, S. Raman, and S. Kahane, Density of discrete levels in 116SnPhys Rev C 47, 1504 (1993).
[16] H. Baba, A shell-model nuclear level density, Nuclear Physics, Section A 159, 625 (1970).
[17] A. V. Ignatyuk, J. L. Weil, S. Raman, and S. Kahane, Density of discrete levels in 116Sn, Phys Rev C 47, 1504 (1993).
[18] S. G. Mashnik and A. J. Sierk, CEM03.03 User Manual and the MCNP6 Code Package, n.d.
[19] S. G. Mashnik, A. J. Sierk, K. K. Gudima, and M. I. Baznat, The MCNP6 Event Generator CEM03.02: Lessons Learned from the Intercomparison, 2010.
[20] S. G. Mashnik and A. J. Sierk, Recent developments of the cascade-exciton model of nuclear reactions, J Nucl Sci Technol 39, 720 (2002).
[21] A. J. Sierk and S. G. Mashnik, Modeling Fission in the Cascade-Exciton Model, (1998).
[22] A. S. Iljinov, M. V. Mebel, N. Bianchi, E. De Sanctis, C. Guaraldo, V. Lucherini, V. Muccifora, E. Polli, A. R. Reolon, and P. Rossi, Phenomenological statistical analysis of level densities, decay widths and lifetimes of excited nuclei, Nucl Phys A 543, 517 (1992).
[23] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, Nuclear Ground-State Masses and Deformations, At Data Nucl Data Tables 59, 185 (1995).
[24] P. Möller, J. R. Nix, and K. L. Kratz, Nucleat Properties for Astrophysical and Radioactive-ion-beam Applications, Atom.Data Nucl.Data Tabl. 66, 131 (1997).
| Primary Language | English |
|---|---|
| Subjects | Nuclear Physics |
| Journal Section | Natural Sciences |
| Authors | |
| Publication Date | September 30, 2025 |
| Submission Date | July 9, 2025 |
| Acceptance Date | September 15, 2025 |
| Published in Issue | Year 2025 Volume: 46 Issue: 3 |