Research Article
BibTex RIS Cite

Some Estimates of the Growth of Polynomials in the Region with Piecewise Smooth Boundary

Year 2025, Volume: 46 Issue: 3, 572 - 582, 30.09.2025
https://doi.org/10.17776/csj.1723278

Abstract

In this paper, we investigate inequalities for higher order derivatives of algebraic polynomials in weighted Lebesgue space. In doing so, using the weighted L_p-norm, we establish the growth of the modulus of the m-th derivatives of algebraic polynomials on the closure and outside of a given region of the complex plane bounded by a piecewise smooth curve with interior zero angles. As a result, we estimate the growth rate of the derivatives of algebraic polynomials on the whole complex plane depending on the parameters of the region under consideration.

References

  • [1] Walsh J.L., Interpolation and approximation by rational functions in the complex domain, AMS, Providence, RI, (1960).
  • [2] Hille E., Szegö G., Tamarkin J.D., On some generalization of a theorem of A. Markoff, Duke Math. J., 3 (1937) 729–739.
  • [3]  Abdullayev F.G., Özkartepe P., On the growth of algebraic polynomials in the whole complex plane, J. Korean Math. Soc., 52(4) (2015) 699-725.
  • [4]  Rickman S., Characterization of quasiconformal arcs, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 395 (1966), 30 p.
  • [5]  Stylianopoulos N., Strong asymptotics for Bergman polynomials over domains with corners and applications, Constr. Approx., 38 (2013) 59–100.
  • [6]  Abdullayev F.G., On the some properties of the orthogonal polynomials over the regions of the complex plane (Part III), Ukr. Math. J., 53(12) (2001) 1934–1948.
  • [7]        Abdullayev F.G., Özkartepe P., An analogue of the Bernstein-Walsh lemma in Jordan regions of the complex plane, J. Inequal. Appl., 2013(570) (2013).
  • [8]        Abdullayev F.G., Gün C.D., On the behavior of the algebraic polynomials in regions with piecewise smooth boundary without cusps, Ann. Pol. Math., 111 (2014) 39–58.
  • [9]        Abdullayev F.G., Gün C.D., Özkartepe P., Inequalities for algebraic polynomials in regions with exterior cusps, J. Nonlinear Funct. Anal., 3 (2015) 1–32.
  • [10]     Abdullayev F.G., Özkartepe N.P., Polynomial inequalities in Lavrentiev regions with interior and exterior zero angles in the weighted Lebesgue space, Publ. Inst. Math. (Beograd), 100(114) (2016) 209–227.
  • [11]     Abdullayev F.G., Polynomial inequalities in regions with corners in the weighted Lebesgue spaces, Filomat, 31(18) (2017) 5647–5670.
  • [12]     Abdullayev F.G., Bernstein-Walsh-type inequalities for derivatives of algebraic polynomials in quasidiscs, Open Math., 2021(19) (2022) 1847–1876.
  • [13]     Abdullayev F.G., Gün C.D., Bernstein-Walsh-type inequalities for derivatives of algebraic polynomials, Bull. Korean Math. Soc., 59(1) (2022) 45–72.
  • [14]   Abdullayev F.G., Imashkyzy M., On the growth of -th derivatives of algebraic polynomials in the weighted Lebesgue space, Appl. Math. Sci. Eng., 30(1) (2022) 249–282.
  • [15]     Abdullayev F.G., Imashkyzy M., On the growth of derivatives of algebraic polynomials in a weighted Lebesgue space, Ukr. Math. J., 74 (5) (2022) 664-684.
  • [16]     Abdullayev F.G., Imashkyzy M., On the behavior of m–th derivatives of polynomials in bounded and unbounded regions without zero angles in weighted Lebesgue spaces, Anal. Math. Phys., 15(56) (2025).
  • [17]     Andrievskii V.V., Weighted Polynomial Inequalities in the Complex Plane, J. Approx. Theory., 164(9) (2012) 1165–1183.
  • [18]     Bernstein S.N., Sur la limitation des derivees des polnomes, C. R. Acad. Sci. Paris., 190 (1930) 338–341.
  • [19]     Bernstein S.N., On the best approximation of continuous functions by polynomials of given degree, Izd. Akad. Nauk SSSR I. (1952); II; (1954) (O nailuchshem problizhenii nepreryvnykh funktsii posredstrvom mnogochlenov dannoi stepeni), Sobraniye sochinenii., I(4) (1912) 11–10.
  • [20]     Borwein P., Erd´elyi T., Polynomials and polynomial inequalities, Graduate Texts in Mathematics, Springer-Verlag, New York, (1995).
  • [21]     Değer U., Abdullayev F.G., On the behavior of derivatives of algebraic polynomials in regions with piecewise quasismooth boundary having cusps, Filomat, 38(10) (2024) 3467–3492.
  • [22]     Değer U., Abdullayev F.G., On the growth of derivatives of algebraic polynomials in regions with a piecewise quasicircle with zero angles, Filomat, 38(10) (2024) 3493–3522.
  • [23]     Ditzian Z., Tikhonov S., Ul’yanov and Nikol’skii-type inequalities, J. Approx. Theory, 133(1) (2005) 100–133.
  • [24]     Ditzian Z., Prymak A., Nikol’skii inequalities for Lorentz space, Rocky Mountain J. Math., 40 (2010) 209–223.
  • [25]     Dubinin V.N., Methods of geometric function theory in classical and modern problems for polynomials, Russ. Math. Surv., 67(4) (2012) 599–684.
  • [26]     Dzjadyk V.K., Introduction to the theory of uniform approximation of functions by polynomials, Nauka, Moscow, (1977).
  • [27]     Gün C.D., On the growth of the modulus of the derivative of algebraic polynomials in bounded and unbounded domains with cusps, Filomat, 37(27) (2023) 9243–9258.
  • [28]     Halan V.D., Shevchuk I.O., Exact Constant in Dzyadyk’s Inequality for the Derivative of an Algebraic Polynomial, Ukr. Math. J., 69(5) (2017) 725–733.
  • [29]     Jackson D., Certain problems on closest approximations, Bull. Amer. Math. Soc., 39 (1933) 889–906.
  • [30]     Mamedhanov D.I., Inequalities of S.M.Nikol’skii type for polynomials in the complex variable on curves, Soviet Math. Dokl., 15 (1974) 34–37.
  • [31]     Milovanovic G.V., Mitrinovic D.S., Rassias Th.M., Topics in polynomials: extremal problems, inequalities, zeros, World Scientific, Singapore, (1994).
  • [32]     Nikol’skii S.M., Approximation of function of several variable and imbeding theorems, Springer-Verlag, New York, (1975).
  • [33]     Özkartepe N.P., Tunc T., Abdullayev F.G., Uniform and pointwise estimates for algebraic polynomials in regions with interior and exterior zero angles, Filomat, 33 (2) (2019) 103–413.
  • [34]     Pritsker I.E., Comparing norms of polynomials in one and several variables, J. Math. Anal. Appl., 216 (1997) 685–695.
  • [35]     Szegö G., Zygmund A., On certain mean values of polynomials, J. Anal. Math., 3(1) (1953) 225–244.
  • [36]     Nevai P., Totik V., Sharp Nikolskii inequalities with exponential weights, Anal. Math., 13 (1987) 261–267.
  • [37]     Abdullayev F.G., Andrievskii V.V., Orthogonal polynomials in the domains with quasiconformal boundary, Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Mat. Nauk, 4(1) (1983) 7–11.
  • [38]     Gaier D., On the convergence of the Bieberbach polynomials in regions with corners, Const.Approx., 4 (1988) 289–305.
  • [39]     Warschawski S.E., Über das Randverhalten der Ableitung der Abbildungsfunktion bei konformer Abbildung, Math. Z., 35 (1932) 321–456.
  • [40]     Andrievskii V.V., Belyi V.I., Dzyadyk V.K., Conformal invariants in Constructive Theory of Functions of Complex Plane, World Federation Publ. Com. Atlanta, (1995).
There are 40 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Natural Sciences
Authors

Cevahir Doğanay Gün 0000-0003-3046-7667

Publication Date September 30, 2025
Submission Date June 19, 2025
Acceptance Date August 20, 2025
Published in Issue Year 2025 Volume: 46 Issue: 3

Cite

APA Gün, C. D. (2025). Some Estimates of the Growth of Polynomials in the Region with Piecewise Smooth Boundary. Cumhuriyet Science Journal, 46(3), 572-582. https://doi.org/10.17776/csj.1723278