Research Article
BibTex RIS Cite

IMPACT OF EXTRACTION SOLVENTS ON TOTAL ANTIOXIDANT CAPACITY OF BARBERRY (BERBERIS CRATOEGNIA) PLANT

Year 2025, Volume: 46 Issue: 3, 501 - 505, 30.09.2025
https://doi.org/10.17776/csj.1686937

Abstract

Inactivation of free radicals formed by human body is carried out by defense mechanisms in which antioxidant molecules participate. It is important to determine the content of these molecules, which have become important in human nutrition in recent years, in consumed foods. This study aims to determine the total antioxidant capacity of the barberry (berberis cratoegnia) plant, which is consumed in many regions of our country. For this purpose, firstly, barberry plant samples were collected from Mersin in summer season, extracts were prepared with different solvents and CERAC method was used to determine the total antioxidant capacities of the samples. The highest value of total antioxidant capacity was obtained by 80% (v/v) methanol solution for flesh part of the fruit. Total phenolic compound and total antioxidant capacities of the flesh part of barberry samples were calculated as 1.954 mmol gallic acid (GA) g-1 and 1.288 mmol Tr (TR) g-1, by Folin-Ciocalteu method and Cerium Reducing Antioxidant Capacity Assay (CERAC), respectively.

Ethical Statement

There is no ethical statement to be declared.

Supporting Institution

There is no supporting institutiion.

Thanks

-

References

  • [1] M. Kumar, S. Prakash, Radha, N. Kumari, A. Pundir, S. Punia, V. Saurabh, P. Choudhary, S. Changan, S. Dhumal, Beneficial role of antioxidant secondary metabolites from medicinal plants in maintaining oral health, Antioxidants, 10 (2021) 1061.
  • [2] R.L. Prior, X. Wu, K. Schaich, Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements, J. Agric Food Chem., 53 (2005) 4290–4302.
  • [3] B. Bekdeşer, R. Apak, Colorimetric Sensing of Antioxidant Capacity via Auric Acid Reduction Coupled to ABTS Oxidation, ACS Omega, 9 (2024) 11738–11746. https://doi.org/10.1021/acsomega.3c09134.
  • [4] B. Halliwell, How to characterize a biological antioxidant, Free Radic Res Commun, 9 (1990) 1–32.
  • [5] S. Parham, A.Z. Kharazi, H.R. Bakhsheshi-Rad, H. Nur, A.F. Ismail, S. Sharif, S. RamaKrishna, F. Berto, Antioxidant, antimicrobial and antiviral properties of herbal materials, Antioxidants, 9 (2020) 1309.
  • [6] R. Apak, K. Güçlü, B. Demirata, M. Özyürek, S.E. Çelik, B. Bektaşoğlu, K.I. Berker, D. Özyurt, Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay, Molecules, 12 (2007) 1496–1547.
  • [7] M.C. Christodoulou, J.C. Orellana Palacios, G. Hesami, S. Jafarzadeh, J.M. Lorenzo, R. Domínguez, A. Moreno, M. Hadidi, Spectrophotometric methods for measurement of antioxidant activity in food and pharmaceuticals, Antioxidants, 11 (2022) 2213.
  • [8] H.D. Huang DeJian, O.B. Ou BoXin, R.L. Prior, The chemistry behind antioxidant capacity assays., (2005).
  • [9] L. Diniz do Nascimento, A.A. Barbosa de Moraes, K. Santana da Costa, J.M. Pereira Galúcio, P.S. Taube, C.M. Leal Costa, J. Neves Cruz, E.H. de Aguiar Andrade, L.J. Guerreiro de Faria, Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications, Biomolecules, 10 (2020) 988.
  • [10] E. Capanoglu, S. Kamiloglu, S. Demirci Cekic, K. Sozgen Baskan, A.N. Avan, S. Uzunboy, R. Apak, Antioxidant activity and capacity measurement, Plant Antioxidants and Health, (2020) 1–66.
  • [11] D. Ozyurt, B. Demirata, R. Apak, Determination of total antioxidant capacity by a new spectrophotometric method based on Ce (IV) reducing capacity measurement, Talanta, 71 (2007) 1155–1165.
  • [12] T. Baytop, Türkiye’nin tıbbı ve zehirli bitkileri, İstanbul Universitesi, 1963.
  • [13] T. Baytop, Türkiyede bitkiler ile tedavi, (No Title) (1984).
  • [14] M. V Dimitrijević, V.D. Mitić, G.Ž. Ranković, D.L. Miladinović, Survey of antioxidant properties of barberry: A chemical and chemometric approach, Anal Lett., 53 (2020) 671–682.
  • [15] Y.C. Gercek, D. Ozyurt, O. Erol, B.D. Ozturk, G.C. Oz, Comparison of polyphenolic profile and antioxidant capacity of Prunus subgenus Cerasus L. species from Turkey, European Food Research and Technology, 249 (2023) 1363–1376.
  • [16] M.P. Kähkönen, A.I. Hopia, H.J. Vuorela, J.-P. Rauha, K. Pihlaja, T.S. Kujala, M. Heinonen, Antioxidant activity of plant extracts containing phenolic compounds, J. Agric Food Chem., 47 (1999) 3954–3962.
  • [17] R. Apak, K. Güçlü, M. Özyürek, S.E. Karademir, Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, J Agric Food Chem. 52 (2004) 7970–7981.
  • [18] S. Vl, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent, Methods Enzymol, 299 (1999) 152–178.
  • [19] J.J. Chavan, U.B. Jagtap, N.B. Gaikwad, G.B. Dixit, V.A. Bapat, Total phenolics, flavonoids and antioxidant activity of Saptarangi (Salacia chinensis L.) fruit pulp, J. Plant Biochem Biotechnol, 22 (2013) 409–413.
  • [20] A. Dailey, Q. V Vuong, Effect of extraction solvents on recovery of bioactive compounds and antioxidant properties from macadamia (Macadamia tetraphylla) skin waste, Cogent Food Agric., 1 (2015) 1115646.
  • [21] J.S. Boeing, É.O. Barizão, B.C. e Silva, P.F. Montanher, V. de Cinque Almeida, J.V. Visentainer, Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis, Chem Cent J., 8 (2014) 1–9.
  • [22] T.V.N. Thanh Van Ngo, C.J. Scarlett, M.C. Bowyer, P.D.N. Phuong Duc Ngo, Q.V.V. Quan Van Vuong, Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L., (2017).
  • [23] Y.C. Gercek, D. Ozyurt, O. Erol, B.D. Ozturk, G.C. Oz, Comparison of polyphenolic profile and antioxidant capacity of Prunus subgenus Cerasus L. species from Turkey, European Food Research and Technology, 249 (2023) 1363–1376.
  • [24] F.A.O. Olgun, D. Ozyurt, K.I. Berker, B. Demirata, R. Apak, Folin–Ciocalteu spectrophotometric assay of ascorbic acid in pharmaceutical tablets and orange juice with pH adjustment and pre‐extraction of lanthanum (III)–flavonoid complexes, J. Sci. Food Agric., 94 (2014) 2401–2408.
  • [25] M.A. Gündeşli, N. Korkmaz, V. Okatan, International Journal of Agriculture, Forestry and Life Sciences Polyphenol content and antioxidant capacity of berries: A review, (n.d.). www.ijafls.org.
There are 25 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry (Other)
Journal Section Natural Sciences
Authors

Fatos Ayca Ozdemir Olgun 0000-0003-1077-2621

Birsen Demirata 0000-0002-0978-0977

Publication Date September 30, 2025
Submission Date April 29, 2025
Acceptance Date September 15, 2025
Published in Issue Year 2025 Volume: 46 Issue: 3

Cite

APA Ozdemir Olgun, F. A., & Demirata, B. (2025). IMPACT OF EXTRACTION SOLVENTS ON TOTAL ANTIOXIDANT CAPACITY OF BARBERRY (BERBERIS CRATOEGNIA) PLANT. Cumhuriyet Science Journal, 46(3), 501-505. https://doi.org/10.17776/csj.1686937