Research Article
BibTex RIS Cite

Year 2025, Volume: 46 Issue: 3, 457 - 463, 30.09.2025
https://doi.org/10.17776/csj.1645587

Abstract

References

  • [1] Azizi A., Green synthesis of Fe₃O₄ nanoparticles and its application in preparation of Fe3O4/cellulose magnetic nanocomposite: a suitable proposal for drug delivery systems, J. Inorg. Organomet. Polym. Mater., 30 (2020) 3552-3561.
  • [2] Gour A., Jain N.K., Advances in green synthesis of nanoparticles, Artif. Cells Nanomed. Biotechnol., 47(1) (2019) 844-851.
  • [3] Hussain I., Singh N.B., Singh A., Singh H., Singh S.C., Green synthesis of nanoparticles and its potential application, Biotechnol. Lett., 38(4) (2016) 545-560.
  • [4] Thakkar K.N., Mhatre S.S., Parikh R.Y., Biological synthesis of metallic nanoparticles, Nanomed. Nanotechnol. Biol. Med., 6(2) (2010) 257-262.
  • [5] Varma R.S., Greener approach to nanomaterials and their sustainable applications, Curr. Opin. Chem. Eng., 1(2) (2012) 123-128.
  • [6] Li L.-s., Li L.-s., Hu J., Yang W., Alivisatos A.P., Band gap variation of size- and shape-controlled colloidal CdSe quantum rods, Nano Lett., 1(7) (2001).
  • [7] Burleson D.J., Driessen M.D., Penn R.L., On the characterization of environmental nanoparticles, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., (2004) 2707-2753.
  • [8] Sharma V.K., Yngard R.A., Lin Y., Silver nanoparticles: Green synthesis and their antimicrobial activities, Adv. Colloid Interface Sci., 145(1) (2009) 83-96.
  • [9] Elemike E.E., Nna P.J., Ikenweke C., Onwudiwe D., Omotade E.T., Singh M., Synthesis, characterization, anti-cancer and antimicrobial studies of iron oxide nanoparticles mediated by Terminalia catappa (Indian almond) leaf extract, Inorg. Chem. Commun., 155 (2023) 111048.
  • [10] Fahmy H.M., Mohamed F.M., Marzouq M.H., Mustafa A.B.E.-D., Alsoudi A.M., Ali O.A., Mohamed M.A., Mahmoud F.A., Review of green methods of iron nanoparticles synthesis and applications, BioNanoScience, 8(2) (2018) 491-503.
  • [11] Ejaz A., Mamtaz Z., Yasmin I., Shaban M., Siddique A.B., Irfan M.I., Ali A., Muhammad S., Sameeh M.Y., Abbas A., Cyperus scariosus extract based greenly synthesized gold nanoparticles as colorimetric nanoprobe for Ni²⁺ detection and as antibacterial and photocatalytic agent, J. Mol. Liq., 393 (2024).
  • [12] Preethi R., Padma P., Anticancer activity of silver nanobioconjugates synthesized from Piper betle leaves extract and its active compound eugenol, Int. J. Pharm. Pharm. Sci., 8 (2016) 201.
  • [13] Khan A.W., Lali N.S., Sabei F.Y., Irfan M.I., Naeem-ul-Hassan M., Sher M., Safhi A.Y., Alsalhi A., Albariqi A.H., Kamli F., Amin H.M.A., Abbas A., Sunlight-assisted green synthesis of gold nanocubes using horsetail leaf extract: A highly selective colorimetric sensor for Pb²⁺, photocatalytic and antimicrobial agent, J. Environ. Chem. Eng., 12(3) (2024).
  • [14] Widatalla H.A., Widdatallah M.O., Eltilib S.H., Yassin L.F., Rahman Ahmed S.A., Alrasheid A.A., Mohamed A.A., Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity, Nanoscale Adv., 4(3) (2022) 911-915.
  • [15] Vijayaram S., Razafindralambo H., Sun Y.-Z., Vasantharaj S., Ghafarifarsani H., Hoseinifar S.H., Raeeszadeh M., Applications of green synthesized metal nanoparticles — a review, Biol. Trace Elem. Res., 202(1) (2024) 360-386.
  • [16] Negreanu-Pirjol B.-S., Oprea O.C., Negreanu-Pirjol T., Roncea F.N., Prelipcean A.-M., Craciunescu O., Iosageanu A., Artem V., Ranca A., Motelica L., Lepadatu A.-C., Cosma M., Popoviciu D.R., Health benefits of antioxidant bioactive compounds in the fruits and leaves of Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot, Antioxidants, 12(4) (2023) 951.
  • [17] Poyraz Engin S., Mert C., Yalova koşullarında bazı aronya çeşitlerinin fenolojik ve morfolojik özelliklerinin belirlenmesi, Bahçe, 53(1) (2024) 27-33.
  • [18] Ali Ş., Ümmügülsüm E., Dünya’da ve ülkemizde aronya (Aronia melanocarpa Michx. Elliot) üretimi ve değerlendirilme şekilleri, Turk. J. Agric. Food Sci. Technol., (2022) 81-85.
  • [19] Zang Z., Li Y., Chou S., Tian J., Si X., Wang Y., Tan H., Gao N., Shu C., Li D., Chen W., Chen Y., Wang L., He Y., Li B., Polyphenol nanoparticles based on bioresponse for the delivery of anthocyanins, Food Res. Int., 184 (2024).
  • [20] Li T., Wang L., Chen Z., Zhang X., Zhu Z., Functional properties and structural changes of rice proteins with anthocyanins complexation, Food Chem., 331 (2020) 127336.
  • [21] Koh J., Xu Z., Wicker L., Blueberry pectin and increased anthocyanins stability under in vitro digestion, Food Chem., 302 (2020).
  • [22] Kavela E.T., Szalóki-Dorkó L., Máté M., The efficiency of selected green solvents and parameters for polyphenol extraction from chokeberry (Aronia melanocarpa (Michx)) pomace, Foods, (2023).
  • [23] Kanchi S., Ahmed S., Green metal nanoparticles: synthesis, characterization and their applications, John Wiley & Sons, (2018).
  • [24] Abbas N., Ousaadi M.I., Berkani M., Canle M., Oumnia K., Gnanasekaran L., Barceló D., Vasseghian Y., El Mouatez Billah H.A., Green synthesis and analysis of iron oxide nanoparticles for methylene blue degradation by Fenton-like process: Antimicrobial properties and integrated AI-GA modeling, Inorg. Chem. Commun., 176 (2025) 114268.
  • [25] Laid T.M., Abdelhamid K., Eddine L.S., Abderrhmane B., Optimizing the biosynthesis parameters of iron oxide nanoparticles using central composite design, J. Mol. Struct., 1229 (2021) 129497.
  • [26] Kheshtzar R., Berenjian A., Taghizadeh S.-M., Ghasemi Y., Asad A.G., Ebrahiminezhad A., Optimization of reaction parameters for the green synthesis of zero valent iron nanoparticles using pine tree needles, Green Process. Synth., 8(1) (2019) 846-855.
  • [27] Mahlaule-Glory L.M., Mapetla S., Makofane A., Mathipa M.M., Hintsho-Mbita N.C., Biosynthesis of iron oxide nanoparticles for the degradation of methylene blue dye, sulfisoxazole antibiotic and removal of bacteria from real water, Heliyon, 8(9) (2022).
  • [28] Karam S.T., Abdulrahman A.F., Green synthesis and characterization of ZnO nanoparticles by using thyme plant leaf extract, Photonics, 9(8) (2022) 594.
  • [29] Ndou N., Rakgotho T., Nkuna M., Doumbia I.Z., Mulaudzi T., Ajayi R.F., Green synthesis of iron oxide (hematite) nanoparticles and their influence on Sorghum bicolor growth under drought stress, Plants, (2023).
  • [30] Qayoom M., Shah K.A., Pandit A.H., Firdous A., Dar G.N., Dielectric and electrical studies on iron oxide (α-Fe₂O₃) nanoparticles synthesized by modified solution combustion reaction for microwave applications, J. Electroceram., 45(1) (2020) 7-14.
  • [31] Sparavigna A.C., Raman spectroscopy of the iron oxides in the form of minerals, particles and nanoparticles, (2023).
  • [32] Martin S., Takao H., Tomoyuki K., Yoshikuni H., Determination of SiO₂ Raman spectrum indicating the transformation from coesite to quartz in Gföhl migmatitic gneisses in the Moldanubian Zone, Czech Republic, (2008) 105.
  • [33] Pena-Pereira F., Wojnowski W., Tobiszewski M., AGREE — analytical GREEnness metric approach and software, Anal. Chem., 92(14) (2020) 10076-10082.

Green Synthesis and Characterization of Iron Oxide Nanoparticles Using Aronia melanocarpa Extract

Year 2025, Volume: 46 Issue: 3, 457 - 463, 30.09.2025
https://doi.org/10.17776/csj.1645587

Abstract

Aronia melanocarpa (Michx.) Elliott, known for its high antioxidant content, can play an effective role in biological reduction processes. This method offers a more sustainable production route compared to traditional chemical reducing agents, causing less harm to the environment. The present study proposes an innovative method for the synthesis of iron oxide nanoparticles (FeO NPs) using lyophilized A. melanocarpa fruit extract as a low-cost and eco-friendly reducing agent. The nanoparticles were characterized by UV–Visible spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), Energy Dispersive X-Ray analysis (EDX) and optic microscope images of green synthesised FeO NPs. The UV–Visible spectrum of FeO NPs showed the surface plasmon resonance (SPR) band at 295 nm. Functional group and morphology were shown by Raman spectroscopy. The SEM analyses demonstrated that the spherical shape of the nanoparticles with the uniform distribution of the grains. EDX results showed the percentage of elements in synthesized FeO NPs using A. melanocarpa extract. The green synthesized ¬ FeO NPs nanoparticles from A. melanocarpa extract with potential for use in the application of biomedical and environmental applications.

Ethical Statement

No human or animal subjects were used in this study.

Supporting Institution

Ece Özkan thanks the financial support from the Scientific and Technological Research Council of Türkiye (TUBITAK) under the BIDEB/ 2218 National Postdoctoral Research Scholarship Program (project no. 122C249). Batuhan Öztürk thanks the financial support from the Scientific and Technological Research Council of Türkiye (TUBITAK) under the BIDEB/ 2210 MSc/MA Scholarship Programs.

References

  • [1] Azizi A., Green synthesis of Fe₃O₄ nanoparticles and its application in preparation of Fe3O4/cellulose magnetic nanocomposite: a suitable proposal for drug delivery systems, J. Inorg. Organomet. Polym. Mater., 30 (2020) 3552-3561.
  • [2] Gour A., Jain N.K., Advances in green synthesis of nanoparticles, Artif. Cells Nanomed. Biotechnol., 47(1) (2019) 844-851.
  • [3] Hussain I., Singh N.B., Singh A., Singh H., Singh S.C., Green synthesis of nanoparticles and its potential application, Biotechnol. Lett., 38(4) (2016) 545-560.
  • [4] Thakkar K.N., Mhatre S.S., Parikh R.Y., Biological synthesis of metallic nanoparticles, Nanomed. Nanotechnol. Biol. Med., 6(2) (2010) 257-262.
  • [5] Varma R.S., Greener approach to nanomaterials and their sustainable applications, Curr. Opin. Chem. Eng., 1(2) (2012) 123-128.
  • [6] Li L.-s., Li L.-s., Hu J., Yang W., Alivisatos A.P., Band gap variation of size- and shape-controlled colloidal CdSe quantum rods, Nano Lett., 1(7) (2001).
  • [7] Burleson D.J., Driessen M.D., Penn R.L., On the characterization of environmental nanoparticles, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., (2004) 2707-2753.
  • [8] Sharma V.K., Yngard R.A., Lin Y., Silver nanoparticles: Green synthesis and their antimicrobial activities, Adv. Colloid Interface Sci., 145(1) (2009) 83-96.
  • [9] Elemike E.E., Nna P.J., Ikenweke C., Onwudiwe D., Omotade E.T., Singh M., Synthesis, characterization, anti-cancer and antimicrobial studies of iron oxide nanoparticles mediated by Terminalia catappa (Indian almond) leaf extract, Inorg. Chem. Commun., 155 (2023) 111048.
  • [10] Fahmy H.M., Mohamed F.M., Marzouq M.H., Mustafa A.B.E.-D., Alsoudi A.M., Ali O.A., Mohamed M.A., Mahmoud F.A., Review of green methods of iron nanoparticles synthesis and applications, BioNanoScience, 8(2) (2018) 491-503.
  • [11] Ejaz A., Mamtaz Z., Yasmin I., Shaban M., Siddique A.B., Irfan M.I., Ali A., Muhammad S., Sameeh M.Y., Abbas A., Cyperus scariosus extract based greenly synthesized gold nanoparticles as colorimetric nanoprobe for Ni²⁺ detection and as antibacterial and photocatalytic agent, J. Mol. Liq., 393 (2024).
  • [12] Preethi R., Padma P., Anticancer activity of silver nanobioconjugates synthesized from Piper betle leaves extract and its active compound eugenol, Int. J. Pharm. Pharm. Sci., 8 (2016) 201.
  • [13] Khan A.W., Lali N.S., Sabei F.Y., Irfan M.I., Naeem-ul-Hassan M., Sher M., Safhi A.Y., Alsalhi A., Albariqi A.H., Kamli F., Amin H.M.A., Abbas A., Sunlight-assisted green synthesis of gold nanocubes using horsetail leaf extract: A highly selective colorimetric sensor for Pb²⁺, photocatalytic and antimicrobial agent, J. Environ. Chem. Eng., 12(3) (2024).
  • [14] Widatalla H.A., Widdatallah M.O., Eltilib S.H., Yassin L.F., Rahman Ahmed S.A., Alrasheid A.A., Mohamed A.A., Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity, Nanoscale Adv., 4(3) (2022) 911-915.
  • [15] Vijayaram S., Razafindralambo H., Sun Y.-Z., Vasantharaj S., Ghafarifarsani H., Hoseinifar S.H., Raeeszadeh M., Applications of green synthesized metal nanoparticles — a review, Biol. Trace Elem. Res., 202(1) (2024) 360-386.
  • [16] Negreanu-Pirjol B.-S., Oprea O.C., Negreanu-Pirjol T., Roncea F.N., Prelipcean A.-M., Craciunescu O., Iosageanu A., Artem V., Ranca A., Motelica L., Lepadatu A.-C., Cosma M., Popoviciu D.R., Health benefits of antioxidant bioactive compounds in the fruits and leaves of Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot, Antioxidants, 12(4) (2023) 951.
  • [17] Poyraz Engin S., Mert C., Yalova koşullarında bazı aronya çeşitlerinin fenolojik ve morfolojik özelliklerinin belirlenmesi, Bahçe, 53(1) (2024) 27-33.
  • [18] Ali Ş., Ümmügülsüm E., Dünya’da ve ülkemizde aronya (Aronia melanocarpa Michx. Elliot) üretimi ve değerlendirilme şekilleri, Turk. J. Agric. Food Sci. Technol., (2022) 81-85.
  • [19] Zang Z., Li Y., Chou S., Tian J., Si X., Wang Y., Tan H., Gao N., Shu C., Li D., Chen W., Chen Y., Wang L., He Y., Li B., Polyphenol nanoparticles based on bioresponse for the delivery of anthocyanins, Food Res. Int., 184 (2024).
  • [20] Li T., Wang L., Chen Z., Zhang X., Zhu Z., Functional properties and structural changes of rice proteins with anthocyanins complexation, Food Chem., 331 (2020) 127336.
  • [21] Koh J., Xu Z., Wicker L., Blueberry pectin and increased anthocyanins stability under in vitro digestion, Food Chem., 302 (2020).
  • [22] Kavela E.T., Szalóki-Dorkó L., Máté M., The efficiency of selected green solvents and parameters for polyphenol extraction from chokeberry (Aronia melanocarpa (Michx)) pomace, Foods, (2023).
  • [23] Kanchi S., Ahmed S., Green metal nanoparticles: synthesis, characterization and their applications, John Wiley & Sons, (2018).
  • [24] Abbas N., Ousaadi M.I., Berkani M., Canle M., Oumnia K., Gnanasekaran L., Barceló D., Vasseghian Y., El Mouatez Billah H.A., Green synthesis and analysis of iron oxide nanoparticles for methylene blue degradation by Fenton-like process: Antimicrobial properties and integrated AI-GA modeling, Inorg. Chem. Commun., 176 (2025) 114268.
  • [25] Laid T.M., Abdelhamid K., Eddine L.S., Abderrhmane B., Optimizing the biosynthesis parameters of iron oxide nanoparticles using central composite design, J. Mol. Struct., 1229 (2021) 129497.
  • [26] Kheshtzar R., Berenjian A., Taghizadeh S.-M., Ghasemi Y., Asad A.G., Ebrahiminezhad A., Optimization of reaction parameters for the green synthesis of zero valent iron nanoparticles using pine tree needles, Green Process. Synth., 8(1) (2019) 846-855.
  • [27] Mahlaule-Glory L.M., Mapetla S., Makofane A., Mathipa M.M., Hintsho-Mbita N.C., Biosynthesis of iron oxide nanoparticles for the degradation of methylene blue dye, sulfisoxazole antibiotic and removal of bacteria from real water, Heliyon, 8(9) (2022).
  • [28] Karam S.T., Abdulrahman A.F., Green synthesis and characterization of ZnO nanoparticles by using thyme plant leaf extract, Photonics, 9(8) (2022) 594.
  • [29] Ndou N., Rakgotho T., Nkuna M., Doumbia I.Z., Mulaudzi T., Ajayi R.F., Green synthesis of iron oxide (hematite) nanoparticles and their influence on Sorghum bicolor growth under drought stress, Plants, (2023).
  • [30] Qayoom M., Shah K.A., Pandit A.H., Firdous A., Dar G.N., Dielectric and electrical studies on iron oxide (α-Fe₂O₃) nanoparticles synthesized by modified solution combustion reaction for microwave applications, J. Electroceram., 45(1) (2020) 7-14.
  • [31] Sparavigna A.C., Raman spectroscopy of the iron oxides in the form of minerals, particles and nanoparticles, (2023).
  • [32] Martin S., Takao H., Tomoyuki K., Yoshikuni H., Determination of SiO₂ Raman spectrum indicating the transformation from coesite to quartz in Gföhl migmatitic gneisses in the Moldanubian Zone, Czech Republic, (2008) 105.
  • [33] Pena-Pereira F., Wojnowski W., Tobiszewski M., AGREE — analytical GREEnness metric approach and software, Anal. Chem., 92(14) (2020) 10076-10082.
There are 33 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Analytical Chemistry
Journal Section Natural Sciences
Authors

Ece Ozkan 0000-0001-7529-5569

Batuhan Ozturk 0000-0002-3619-7138

Melek Karaaslan 0000-0002-9910-2909

Mehmet Bay 0000-0001-6447-6460

Suzan Biran Ay 0000-0002-2968-4982

Nihan Kosku Perkgöz 0000-0003-1331-0959

İsmail Murat Palabıyık 0000-0003-2843-5690

Publication Date September 30, 2025
Submission Date February 24, 2025
Acceptance Date July 9, 2025
Published in Issue Year 2025 Volume: 46 Issue: 3

Cite

APA Ozkan, E., Ozturk, B., Karaaslan, M., … Bay, M. (2025). Green Synthesis and Characterization of Iron Oxide Nanoparticles Using Aronia melanocarpa Extract. Cumhuriyet Science Journal, 46(3), 457-463. https://doi.org/10.17776/csj.1645587