Research Article
BibTex RIS Cite

Antibacterial Effect of Plant-Based Bioactive Molecule Mixture Against Pseudomonas aeruginosa

Year 2025, Volume: 46 Issue: 3, 495 - 500, 30.09.2025
https://doi.org/10.17776/csj.1619592

Abstract

The aim of this study was to determine the antibiotic resistance profile of Pseudomonas aeruginosa strains collected from the Microbiology Laboratory of Çukurova University Hospital and evaluate the antibacterial effect of a plant-based bioactive molecule (BAM) mixture against these strains. The VITEK-2 system and antibiogram cards were utilized for organism identification and antibiotic susceptibility determination. P. aeruginosa (N = 37) demonstrated high resistance rates to common antibiotics, including Ampicillin-Sulbactam (100%), Tetracycline (100%), Trimethoprim-Sulfamethoxazole (100%), Tigecycline (97.3%), and Imipenem (64.86%). Resistance was also observed for Levofloxacin, Piperacillin, and Netilmicin (59.46%), Meropenem and Amikacin (56.76%), Ciprofloxacin (40.54%), Cefoperazone-Sulbactam (32.43%), Ceftazidime (25%), Cefepime (24.32%), and Piperacillin-Tazobactam (14.29%). None of the strains were resistant to Colistin. BAM showed significant antibacterial activity, with the highest effect observed in strain P4 (99%). Activity was also notable in strains P2 (98%), P12 (97%), P11 (94%), P37 (81%), P14 (78%), and P1 (35%). In conclusion, the BAM mixture demonstrated high antibacterial efficacy and holds promise as a natural agent for controlling multidrug-resistant (MDR) P. aeruginosa strains in the future.

References

  • Nimer NA., Nosocomial Infection and Antibiotic-Resistant Threat in the Middle East, Infect Drug Resist., 15 (2022) 631-639.
  • Mulu W., Kibru G., Beyene G., Damtie M., Postoperative Nosocomial Infections and Antimicrobial Resistance Pattern of Bacteria Isolates among Patients Admitted at Felege Hiwot Referral Hospital, Bahirdar, Ethiopia, Ethiop J Health Sci., 22(1) (2012) 7-18.
  • Lemiech-Mirowska E., Kiersnowska Z.M., Michałkiewicz M., Depta A., Marczak M., Nosocomial infections as one of the most important problems of the healthcare system, Ann Agric Environ Med., 28(3) (2021) 361–366.
  • Gozel M.G., et al., National Infection Control Program in Turkey: The healthcare associated infection rate experiences over 10 years, Am J Infect Control., 49 (2021) 885-892.
  • Olise C.C., Simon-Oke I.A., et al., Fomites: Possible vehicle of nosocomial infections, J Public Health Catalog., 1(1) (2018) 16.
  • Fazeli H., Akbari R., Moghim S., Narimani T., Arabestani M.R., Ghoddousi A.R., Pseudomonas aeruginosa infections in hospitalized patients, hospital environment, and medical staff specimens, J Res Med Sci., 17(4) (2012) 332–337.
  • L Afshari A., Pagani L., Harbarth S., Year in Review 2011: Critical Care - Infection. Critical Care., 16(6) (2012).
  • Reynolds D.J., Kollef M.H., The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections: An update, Drugs., 81(18) (2021) 2117–2131.
  • Micek S.T., et al., Pseudomonas aeruginosa hospital-acquired pneumonia: impact of pneumonia classification, Infect Control Hosp Epidemiol., 36(10) (2015) 1190–1197.
  • Rosenthal V.D., et al., International Nosocomial Infection Control Consortium (INICC) report, data summary of 50 countries for 2010–2015: Device-associated module, Am J Infect Control., 44(12) (2016) 1495–1504.
  • Williams F.N., et al., The leading causes of death after burn injury in a single pediatric burn center, Crit Care., 13(6) (2009) R183.
  • Thaden J.T., Park L.P., Maskarinec S.A., Ruffin F., Fowler V.G. Jr, van Duin D., Results from a 13-year prospective cohort study show increased mortality associated with bloodstream infections caused by Pseudomonas aeruginosa compared to other bacteria, Antimicrob Agents Chemother., 61(6) (2017) e02671-16.
  • Weiner-Lastinger L.M., et al., Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017, Infect Control Hosp Epidemiol., 41(1) (2020) 1–18.
  • Mulcahy L.R., Burns J.L., Lory S., Lewis K., Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis, J Bacteriol., 192(23) (2010) 6191–6199.
  • Dreier J., Ruggerone P., Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa, Front Microbiol., 6 (2015) 660.
  • Goli H.R., Nahaei M.R., Rezaee M.A., et al., Contribution of mexAB-oprM and mexXY(-oprA) efflux operons in antibiotic resistance of clinical Pseudomonas aeruginosa isolates in Tabriz, Iran, Infect Genet Evol., 45 (2016) 75–82.
  • Fernández L., Hancock R.E.W., Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance, Clin Microbiol Rev., 25(4) (2012) 661–681.
  • Ortiz de la Rosa J.M., Nordmann P., Poirel L., ESBLs and resistance to ceftazidime/avibactam and ceftolozane/tazobactam in Escherichia coli and Pseudomonas aeruginosa, J Antimicrob Chemother., 74(7) (2019) 1934–1939.
  • Ramirez M.S., Tolmasky M.E., Aminoglycoside modifying enzymes, Drug Resist Updat., 13(6) (2010) 151–171.
  • Taylor P.K., Yeung A.T.Y., Hancock R.E.W., Antibiotic resistance in Pseudomonas aeruginosa biofilms: Towards the development of novel anti-biofilm therapies, J Biotechnol., 191 (2014) 121–130.
  • Wood T.K., Knabel S.J., Kwan B.W., Bacterial persister cell formation and dormancy, Appl Environ Microbiol., 79(23) (2013) 7116–7121.
  • Kielwein G.,. Ein Nährboden zur Selektiven Züchtung von Pseudomonaden und Aeromonaden, Arch F Lebensmittelhyg., 20 (1969)131-133.
  • Anonymous,. Microbiolojischen Handbuch. Merck. Darmstadt., 1978.
  • Ali Z., Mumtaz N., Naz S.A., Jabeen N., Shafique M., Multi-drug-Resistant Pseudomonas aeruginosa: A Threat of Nosocomial Infections in Tertiary Care Hospitals, J Pak Med Assoc., 65(1) (2015) 12-6.
  • Livermore D.M., Beta-Lactamases in Laboratory and Clinical Resistance, Clin Microbiol Rev., 8(4) (1995) 557-84.
  • Gamero Delgado M.C., Garcia-Mayorgas A.D., Rodriguez F., Ibarra A., Casal M., Susceptibility and Resistance of Pseudomonas aeruginosa to Antimicrobial Agents, Rev Esp Quimioter., 20(2) (2007) 230-3.
  • Tanriverdi Cayci Y., Karacan G., Gür Vural D., Bilgin K., Birinci A., Kan Kültürlerinden İzole Edilen Nonfermentatif Gram Negatif Bakterilerin Çeşitli Antibiyotiklere Direnç Durumları, Journal of Biotechnology and Strategic Health Research., 5(1) (2021) 44-9.
  • Akkaya Isik S., A Meta-analysis of Antibiotic Resistance Rates in Pseudomonas aeruginosa Isolated in Blood Cultures in Turkey between 2007 and 2017, Northern Clinics of Istanbul., (2020).
  • Teixeira P., Tacão M., Alves A., Henriques I., Antibiotic and Metal Resistance in a ST395 Pseudomonas aeruginosa Environmental Isolate: A Genomics Approach, Marine Pollution Bulletin., 110(1) (2016) 75-81.
  • Van Eldere J., Multicentre Surveillance of Pseudomonas aeruginosa Susceptibility Patterns in Nosocomial Infections, Journal of Antimicrobial Chemotherapy, 51(2) (2003) 347-52.
  • Gailiene G., Pavilonis A., Kareiviene V., The Peculiarities of Pseudomonas aeruginosa Resistance to Antibiotics and Prevalence of Serogroups, Medicina (Kaunas),43(1) (2007) 36-42.
  • Richard P., Delangle M.H., Raffi F., Espaze E., Richet H., Impact of Fluoroquinolone Administration on the Emergence of Fluoroquinolone-resistant Gram-negative Bacilli from Gastrointestinal Flora, Clin Infect Dis, 32(1) (2001) 162-6.
  • Jones M.E., Draghi D.C., Thornsberry C., Karlowsky J.A., Sahm D.F., Wenzel R.P., Resistance among Bacterial Pathogens in the Intensive Care Unit-A European and North American Surveillance Study (2000-2002), Ann Clin Microbiol Antimicrob, 3 (2004) 14.
  • Strateva T., Yordanov D., Pseudomonas aeruginosa - A Phenomenon of Bacterial Resistance, J Med Microbiol, 58(Pt9) (2009) 1133-48.
  • Morfin-Otero R., Tinoco-Favila J.C., Sader H.S., Salcido-Gutierrez L., Perez-Gomez H.R., Gonzalez-Diaz E., Resistance Trends in Gram-negative Bacteria: Surveillance Results from Two Mexican Hospitals, 2005–2010, BMC Research Notes, (2012) 5(1).
  • Goli H.R., Nahaei M.R., Ahangarzadeh R.M., Hasani A., Samadi Kafil H., Aghazadeh M., Emergence of Colistin Resistant Pseudomonas aeruginosa at Tabriz Hospitals, Iran, Iran J Microbiol, 8(1) (2016) 62-9.
  • Miranda C.C., de Filippis I., Pinto L.H., Coelho-Souza T., Bianco K., Cacci L.C., Genotypic Characteristics of Multidrug-resistant Pseudomonas aeruginosa from Hospital Wastewater Treatment Plant in Rio de Janeiro, Brazil, J Appl Microbiol, 118(6) (2015) 1276-86.

Bitki Bazlı Biyoaktif Molekül Karışımının Pseudomonas aeruginosa'ya Karşı Antibakteriyel Etkisi

Year 2025, Volume: 46 Issue: 3, 495 - 500, 30.09.2025
https://doi.org/10.17776/csj.1619592

Abstract

Bu çalışmanın amacı, Çukurova Üniversitesi Hastanesi Mikrobiyoloji Laboratuvarı'ndan toplanan Pseudomonas aeruginosa suşlarının antibiyotik direnç profilini belirlemek ve bitki bazlı bir biyoaktif molekül (BAM) karışımının bu suşlara karşı antibakteriyel etkisini değerlendirmektir. Organizma tanımlaması ve antibiyotik duyarlılığının belirlenmesi için VITEK-2 sistemi ve antibiyogram kartları kullanılmıştır. P. aeruginosa (N = 37) Ampisilin-Sulbaktam (%100), Tetrasiklin (%100), Trimetoprim-Sülfametoksazol (%100), Tigesiklin (%97,3) ve İmipenem (%64,86) dahil olmak üzere yaygın antibiyotiklere karşı yüksek direnç oranları göstermiştir. Levofloksasin, Piperasilin ve Netilmisin (%59,46), Meropenem ve Amikasin (%56,76), Siprofloksasin (%40,54), Sefoperazon-Sulbaktam (%32,43), Seftazidim (%25), Sefepim (%24,32) ve Piperasilin-Tazobaktam (%14,29) için de direnç gözlenmiştir. Suşların tamami Kolistin'e hassas bulunmuştur. Çalışmamızda BAM önemli antibakteriyel aktivite göstermiş ve en yüksek etki P4 suşunda gözlenmiştir (%99). P2 (%98), P12 (%97), P11 (%94), P37 (%81), P14 (%78) ve P1 (%35) suşlarında da kayda değer aktiviteler belirlenmiştir.
Sonuç olarak, BAM karışımı yüksek antibakteriyel etkinlik göstermiştir ve gelecekte çoklu ilaca dirençli (MDR) P. aeruginosa suşlarını kontrol etmek için doğal bir ajan olarak araştırılması umut vaat etmektedir.

Translated with DeepL.com (free version)

References

  • Nimer NA., Nosocomial Infection and Antibiotic-Resistant Threat in the Middle East, Infect Drug Resist., 15 (2022) 631-639.
  • Mulu W., Kibru G., Beyene G., Damtie M., Postoperative Nosocomial Infections and Antimicrobial Resistance Pattern of Bacteria Isolates among Patients Admitted at Felege Hiwot Referral Hospital, Bahirdar, Ethiopia, Ethiop J Health Sci., 22(1) (2012) 7-18.
  • Lemiech-Mirowska E., Kiersnowska Z.M., Michałkiewicz M., Depta A., Marczak M., Nosocomial infections as one of the most important problems of the healthcare system, Ann Agric Environ Med., 28(3) (2021) 361–366.
  • Gozel M.G., et al., National Infection Control Program in Turkey: The healthcare associated infection rate experiences over 10 years, Am J Infect Control., 49 (2021) 885-892.
  • Olise C.C., Simon-Oke I.A., et al., Fomites: Possible vehicle of nosocomial infections, J Public Health Catalog., 1(1) (2018) 16.
  • Fazeli H., Akbari R., Moghim S., Narimani T., Arabestani M.R., Ghoddousi A.R., Pseudomonas aeruginosa infections in hospitalized patients, hospital environment, and medical staff specimens, J Res Med Sci., 17(4) (2012) 332–337.
  • L Afshari A., Pagani L., Harbarth S., Year in Review 2011: Critical Care - Infection. Critical Care., 16(6) (2012).
  • Reynolds D.J., Kollef M.H., The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections: An update, Drugs., 81(18) (2021) 2117–2131.
  • Micek S.T., et al., Pseudomonas aeruginosa hospital-acquired pneumonia: impact of pneumonia classification, Infect Control Hosp Epidemiol., 36(10) (2015) 1190–1197.
  • Rosenthal V.D., et al., International Nosocomial Infection Control Consortium (INICC) report, data summary of 50 countries for 2010–2015: Device-associated module, Am J Infect Control., 44(12) (2016) 1495–1504.
  • Williams F.N., et al., The leading causes of death after burn injury in a single pediatric burn center, Crit Care., 13(6) (2009) R183.
  • Thaden J.T., Park L.P., Maskarinec S.A., Ruffin F., Fowler V.G. Jr, van Duin D., Results from a 13-year prospective cohort study show increased mortality associated with bloodstream infections caused by Pseudomonas aeruginosa compared to other bacteria, Antimicrob Agents Chemother., 61(6) (2017) e02671-16.
  • Weiner-Lastinger L.M., et al., Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017, Infect Control Hosp Epidemiol., 41(1) (2020) 1–18.
  • Mulcahy L.R., Burns J.L., Lory S., Lewis K., Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis, J Bacteriol., 192(23) (2010) 6191–6199.
  • Dreier J., Ruggerone P., Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa, Front Microbiol., 6 (2015) 660.
  • Goli H.R., Nahaei M.R., Rezaee M.A., et al., Contribution of mexAB-oprM and mexXY(-oprA) efflux operons in antibiotic resistance of clinical Pseudomonas aeruginosa isolates in Tabriz, Iran, Infect Genet Evol., 45 (2016) 75–82.
  • Fernández L., Hancock R.E.W., Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance, Clin Microbiol Rev., 25(4) (2012) 661–681.
  • Ortiz de la Rosa J.M., Nordmann P., Poirel L., ESBLs and resistance to ceftazidime/avibactam and ceftolozane/tazobactam in Escherichia coli and Pseudomonas aeruginosa, J Antimicrob Chemother., 74(7) (2019) 1934–1939.
  • Ramirez M.S., Tolmasky M.E., Aminoglycoside modifying enzymes, Drug Resist Updat., 13(6) (2010) 151–171.
  • Taylor P.K., Yeung A.T.Y., Hancock R.E.W., Antibiotic resistance in Pseudomonas aeruginosa biofilms: Towards the development of novel anti-biofilm therapies, J Biotechnol., 191 (2014) 121–130.
  • Wood T.K., Knabel S.J., Kwan B.W., Bacterial persister cell formation and dormancy, Appl Environ Microbiol., 79(23) (2013) 7116–7121.
  • Kielwein G.,. Ein Nährboden zur Selektiven Züchtung von Pseudomonaden und Aeromonaden, Arch F Lebensmittelhyg., 20 (1969)131-133.
  • Anonymous,. Microbiolojischen Handbuch. Merck. Darmstadt., 1978.
  • Ali Z., Mumtaz N., Naz S.A., Jabeen N., Shafique M., Multi-drug-Resistant Pseudomonas aeruginosa: A Threat of Nosocomial Infections in Tertiary Care Hospitals, J Pak Med Assoc., 65(1) (2015) 12-6.
  • Livermore D.M., Beta-Lactamases in Laboratory and Clinical Resistance, Clin Microbiol Rev., 8(4) (1995) 557-84.
  • Gamero Delgado M.C., Garcia-Mayorgas A.D., Rodriguez F., Ibarra A., Casal M., Susceptibility and Resistance of Pseudomonas aeruginosa to Antimicrobial Agents, Rev Esp Quimioter., 20(2) (2007) 230-3.
  • Tanriverdi Cayci Y., Karacan G., Gür Vural D., Bilgin K., Birinci A., Kan Kültürlerinden İzole Edilen Nonfermentatif Gram Negatif Bakterilerin Çeşitli Antibiyotiklere Direnç Durumları, Journal of Biotechnology and Strategic Health Research., 5(1) (2021) 44-9.
  • Akkaya Isik S., A Meta-analysis of Antibiotic Resistance Rates in Pseudomonas aeruginosa Isolated in Blood Cultures in Turkey between 2007 and 2017, Northern Clinics of Istanbul., (2020).
  • Teixeira P., Tacão M., Alves A., Henriques I., Antibiotic and Metal Resistance in a ST395 Pseudomonas aeruginosa Environmental Isolate: A Genomics Approach, Marine Pollution Bulletin., 110(1) (2016) 75-81.
  • Van Eldere J., Multicentre Surveillance of Pseudomonas aeruginosa Susceptibility Patterns in Nosocomial Infections, Journal of Antimicrobial Chemotherapy, 51(2) (2003) 347-52.
  • Gailiene G., Pavilonis A., Kareiviene V., The Peculiarities of Pseudomonas aeruginosa Resistance to Antibiotics and Prevalence of Serogroups, Medicina (Kaunas),43(1) (2007) 36-42.
  • Richard P., Delangle M.H., Raffi F., Espaze E., Richet H., Impact of Fluoroquinolone Administration on the Emergence of Fluoroquinolone-resistant Gram-negative Bacilli from Gastrointestinal Flora, Clin Infect Dis, 32(1) (2001) 162-6.
  • Jones M.E., Draghi D.C., Thornsberry C., Karlowsky J.A., Sahm D.F., Wenzel R.P., Resistance among Bacterial Pathogens in the Intensive Care Unit-A European and North American Surveillance Study (2000-2002), Ann Clin Microbiol Antimicrob, 3 (2004) 14.
  • Strateva T., Yordanov D., Pseudomonas aeruginosa - A Phenomenon of Bacterial Resistance, J Med Microbiol, 58(Pt9) (2009) 1133-48.
  • Morfin-Otero R., Tinoco-Favila J.C., Sader H.S., Salcido-Gutierrez L., Perez-Gomez H.R., Gonzalez-Diaz E., Resistance Trends in Gram-negative Bacteria: Surveillance Results from Two Mexican Hospitals, 2005–2010, BMC Research Notes, (2012) 5(1).
  • Goli H.R., Nahaei M.R., Ahangarzadeh R.M., Hasani A., Samadi Kafil H., Aghazadeh M., Emergence of Colistin Resistant Pseudomonas aeruginosa at Tabriz Hospitals, Iran, Iran J Microbiol, 8(1) (2016) 62-9.
  • Miranda C.C., de Filippis I., Pinto L.H., Coelho-Souza T., Bianco K., Cacci L.C., Genotypic Characteristics of Multidrug-resistant Pseudomonas aeruginosa from Hospital Wastewater Treatment Plant in Rio de Janeiro, Brazil, J Appl Microbiol, 118(6) (2015) 1276-86.
There are 37 citations in total.

Details

Primary Language English
Subjects Infectious Agents
Journal Section Natural Sciences
Authors

Süreyya Kocamaz 0000-0002-6542-1194

Derya Kocamaz 0000-0002-0705-4672

Burhan Arıkan 0000-0003-2868-7265

Publication Date September 30, 2025
Submission Date January 14, 2025
Acceptance Date September 6, 2025
Published in Issue Year 2025 Volume: 46 Issue: 3

Cite

APA Kocamaz, S., Kocamaz, D., & Arıkan, B. (2025). Antibacterial Effect of Plant-Based Bioactive Molecule Mixture Against Pseudomonas aeruginosa. Cumhuriyet Science Journal, 46(3), 495-500. https://doi.org/10.17776/csj.1619592