Research Article
BibTex RIS Cite

Year 2025, Volume: 46 Issue: 3, 447 - 456, 30.09.2025
https://doi.org/10.17776/csj.1587512

Abstract

References

  • Environmental and Energy Study Institute, “Fossil fuels”. Available at: https://www.eesi.org/topics/fossil-fuels/description
  • Nanda S., Li K., Abatzoglou N., Dalai A.K., Kozinski J.A., 11-Advancements and confinements in hydrogen production technologies, Bioenergy Systems for the Future, Elsevier, (2017) 373-418.
  • Khan M.I., Al-Ghamdi S.G., Hydrogen economy for sustainable development in GCC countries: A SWOT analysis considering current situation, challenges, and prospects, Int. J. Hydrogen Energy, 48 (2023) 10315-10344.
  • Noussan M., Raimondi P.P., Scita R., Hafner M., The role of green and blue hydrogen in the energy transition-A technological and geopolitical perspective, Sustainability, 13(1) (2021) 298.
  • Newborough M., Cooley G., Developments in the global hydrogen market: The spectrum of hydrogen colours, Fuel Cell Bull, 2020 (2020) 16-22.
  • Zhang X., Sa R., Yang S., Zhou F., Jiang Z., Wang R., A non-carbon catalyst support upgrades the intrinsic activity of ruthenium for hydrogen evolution electrocatalysis via strong interfacial electronic effects, Nano Energy, 75 (2020) 104981.
  • Demir D.D., Salcı A., Solmaz R., Preparation, characterization and hydrogen production performance of MoPd deposited carbon felt/Mo electrodes, Int. J. Hydrogen Energy, 43 (2018) 10530-10539.
  • Yu R., Yuan X., Rising of boron nitride: A review on boron nitride nanosheets enhanced anti-corrosion coatings, Prog. Org. Coat., 186 (2024) 107990.
  • Verma C., Ebenso E.E., Quraishi M.A., Corrosion inhibitors for ferrous and nonferrous metals and alloys in ionic sodium chloride solutions: A review, J. Mol. Liq., 248 (2017) 927–942.
  • Zhao X., Yuan S., Jin Z., Zhu Q., Zheng M., Jiang Q., Song H., Duan J., Fabrication of composite coatings with core-shell nanofibers and their mechanical properties, anticorrosive performance, and mechanism in seawater, Prog. Org. Coating, 149 (2020) 105893.
  • Chu J.H., Tong L.B., Wen M., Jiang Z.H., Zou D.N., Liu S.F., Zhang H.J., Inhibited corrosion activity of biomimetic graphene-based coating on Mg alloy through a cerium intermediate layer, Carbon, 161 (2020) 577–589.
  • Arslanhan S., Yıldız R., Döner A., Experimental and theoretical investigation of adsorption and inhibition properties of 2-Amino-1,3,5-triazine-4,6-dithiol against corrosion in hydrochloric acid solution on mild steel, J. Indian Chem. Soc., 100 (2023) 101087.
  • Pyun C.H., Park S.M., In situ spectro electrochemical studies on anodic-oxidation of copper in alkaline-solution, J Electrochem Soc., 133 (1986) 2024-2030.
  • Marioli J.M., Kuwana T., Electrochemical characterization of carbohydrate oxidation at copper electrode, Electrochim Acta, 37 (1992) 1187-1197.
  • Ganci F., Cusumano V., Livreri P., Aiello G., Sunseri C., Inguanta R., Nanostructured Ni-Co alloy electrodes for both hydrogen and oxygen evolution reaction in alkaline electrolyzer, Int. J. Hydrogen Energy, 46 (2021) 10082-10092.
  • Shetty A.R., Hegde A.C., Effect of TiO2 on electrocatalytic behavior of Ni-Mo alloy coating for hydrogen energy, Sci. Energy Technol., 1 (2018) 97–105.
  • Toprak Döşlü S., Döner A., Yıldız R., Electrocatalysis property of CuZn electrode with Pt and Ru decoration, Int. J. Hydrogen Energy, 46 (2021) 22409-22421.
  • Elias L., Scott K., Hegde A.C., Electrolytic Synthesis and Characterization of Electrocatalytic Ni-W Alloy, J. Mater. Eng. Perform., 24 (2015) 4182–4191.
  • Yang Y., Yu Y., Li J., Chen Q., Du Y., Rao P., Li R., Jia C., Kang Z., Deng P., Shen Y., Tian X., Engineering Ruthenium-Based Electrocatalysts for Effective Hydrogen Evolution Reaction, Nano-Micro Lett., 13 160 (2021).
  • Sapountzi F.M., Garcia J.M., Weststrate C.J., Fredriksson H.O.A., Niemantsverdriet J.W., Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas, Prog. Energy Combust., Sci. 58 (2017) 1–35.
  • Wendt H., Spinacé E.V., Neto e Marcelo Linardi A.O., Electrocatalysis and electrocatalysts for low temperature fuel cells: fundamentals, state of the art, research and development,” Quim. Nova, 28 (6) (2005) 1066–1075.
  • Jiang Z., Ren J., Li Y., Zhang X., Zhang P., Huang J., Du C., Chen J., Low-cost high-performance hydrogen evolution electrocatalysts based on Pt-CoP polyhedral with low Pt loading in both alkaline and neutral media, Dalton Trans., 48(24) (2019) 8920–8930.
  • Shi Y., Zhang D., Huang H., Miao H., Wu X., Zhao H., Zhan T., Chen X., Lai J., Wang L., Mixture phases engineering of PtFe nanofoams for efficient hydrogen evolution, Small 18 (2022) 2106947.
  • Cao Z., Chen Q., Zhang J., Li H., Jiang Y., Shen S., Fu G., Lu B.A., Xie Z., Zheng L., Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction, Nat. Commun., 8 (2017) 15131.
  • Kutyła D., Salcı A., Kwiecinska A., Kołczyk-Siedlecka K., Kowalik R., Zabinski P., Solmaz R., Catalytic activity of electrodeposited ternary Co-Ni-Rh thin films for water splitting process, Int. J. Hydrogen Energy, 45 (2020) 34805-34817.
  • Lao M., Rui K., Zhao G., Cui P., Zheng X., Dou S.X., Sun W., Platinum/Nickel bicarbonate heterostructures towards accelerated hydrogen evolution under alkaline conditions, Angew Chem Int Ed Engl, 58, (2019) 5432 -5437.
  • Yıldız R., Arslanhan S., Döner A., A study for hydrogen evolution on Pt–MnCu electrocatalyst, Int. J. Hydrogen Energy, 52, (2024) 1239-1246.
  • Mosallanezhad A., Wei C., Koudakan P.A., Fang Y., Niu S., Bian Z., Liu B., Huang T., Pan H., Wang G., Interfacial synergies between single-atomic Pt and CoS for enhancing hydrogen evolution reaction catalysis, Appl. Catal., B, 315 (2022) 121534.
  • Kim T., Roy S.B., Moon S., Yoo S., Choi H., Parale V.G., Kim Y., Lee J., Jun S.C., Kang K., Chun S.H., Kanamori K., Park H.H., Highly dispersed Pt clusters on F-Doped Tin(IV) oxide aerogel matrix: An ultra-robust hybrid catalyst for enhanced hydrogen evolution, ACS Nano, 16 (2022) 1625-1638.
  • Battiato S., Bruno L., Terrasi A., Mirabella S., Superior performances of electrolessdeposited Ni–P films decorated with an ultralow content of Pt for water-splitting reactions, ACS Appl. Energy Mater., 5 (2022) 2391–2399.
  • Chauhan N., Choi H.W., Kumar M., Yoon D.H., Nanoarchitectonics Pt/NiCo in a carbon matrix as highly efficient electrocatalyst for hydrogen evolution reaction, Electrochim. Acta, 460 (2023) 142634.
  • Yıldız R., Doğru Mert B., Karazehir T., Gurdal Y., Toprak Döşlü S., Experimental and theoretical study on hydrogen production by using Ag nanoparticle-decorated graphite/Ni cathode, Int. J. Energy Res., 45 (2021) 4068–4080.
  • Adam Y.S., Telli E., Farsak M., Kardaş G., Hydrogen production activity of nickel deposited graphite electrodes doped with CoW and CoIr nanoparticles, Int. J. Hydrogen Energy, 48 (2023) 31844-31854.
  • Luo W., Gan J., Huang Z., Chen W., Qian G., Zhou X., Duan X., Boosting HER performance of Pt-based catalysts immobilized on functionalized vulcan carbon by atomic layer deposition, Front. Mater., 6 (2019) 251.
  • Bocris J.O.’M., Reddy A.K.N., Modern Electrochemistry, vol. 2, New York, Plenum press, (1977).
  • Lin Q., Chen G., Zou S., Zhou W., Fu X., Shi S., Electrochemical impedance spectroscopy (EIS) explanation of single crystal Cu(100)/Cu(111) in different corrosion stages, Materials, 16 (2023) 1740.
  • Özcan M., Karadağ E., Dehri İ, Investigation of adsorption characteristics of methionine at mild steel/sulfuric acid interface: An experimental and theoretical study, Colloids Surf. A Physicochem. Eng. Aspects, 316 (2008) 55–61.
  • Gan C.L., Liu X.F., Huang H.Y., Xie J.X., Electrochemical corrosion performance of continuous columnar-grained BFe10-1-1 alloy, Chin. J. Eng., 33(12) (2011) 1492–1500.
  • Sherif E.M., Erasmus R.M., Comins J.D., Corrosion of copper in aerated synthetic sea water solutions and its inhibition by 3-amino-1,2,4-triazole, J. Colloid Interface Sci., 309 (2007) 470–477.
  • Kunze J., Maurice V., Klein L.H., Strehblow H.H., Marcus P., In situ STM study of the duplex passive films formed on Cu(111) and Cu(001) in 0.1 M NaOH, Corrosion Sci, 46 (2004) 245–264.

Hydrogen Evolution and Corrosion Behaviors of Cu/Co-Pt As an Effective Electrocatalyst

Year 2025, Volume: 46 Issue: 3, 447 - 456, 30.09.2025
https://doi.org/10.17776/csj.1587512

Abstract

It is difficult to manufacture a highly efficient and stable electrocatalyst with high corrosion resistance for the hydrogen evolution reaction (HER) in alkaline media. In this study, a Cu/Co-Pt electrocatalyst with high characteristic hydrogen evolution, stability, and high corrosion resistance is designed. Copper was first coated with a thin film of cobalt (Cu/Co) then this surface is modified with trace amounts of platinum nanoparticles (Cu/Co-Pt). Cu/Co-Pt displays very high exchange current density (8.03 mA cm-2) when compared to literature. Hydrogen adsorption onset potential (Eonset) and charge transfer resistance (Rct) are found to be 1.03 V and 0.34 Ω cm2 at -1.35 V, respectively. Cu/Co-Pt also shows very stable catalytic performance with chronoamperometry (CA) and cyclic tests. In addition to HER performance of Cu/Co-Pt, semi logarithmic anodic current-potential curves and EIS are used to determine the corrosion behavior of Cu/Co-Pt. This electrocatalyst has very high polarization resistance (Rp) values over time in a strong alkaline environment. This high protection may due to the passive layer resulting from platinum nanoparticles formed on the surface. This study contains valuable information on the preparation of electrocatalysts in a facile method that are highly efficient, stable and resistant to strong alkaline environments for commercial applications.

Thanks

We would like to thank to Prof. Dr. Reşit YILDIZ from Mardin Artuklu University and Mardin Artuklu University for their contributions.

References

  • Environmental and Energy Study Institute, “Fossil fuels”. Available at: https://www.eesi.org/topics/fossil-fuels/description
  • Nanda S., Li K., Abatzoglou N., Dalai A.K., Kozinski J.A., 11-Advancements and confinements in hydrogen production technologies, Bioenergy Systems for the Future, Elsevier, (2017) 373-418.
  • Khan M.I., Al-Ghamdi S.G., Hydrogen economy for sustainable development in GCC countries: A SWOT analysis considering current situation, challenges, and prospects, Int. J. Hydrogen Energy, 48 (2023) 10315-10344.
  • Noussan M., Raimondi P.P., Scita R., Hafner M., The role of green and blue hydrogen in the energy transition-A technological and geopolitical perspective, Sustainability, 13(1) (2021) 298.
  • Newborough M., Cooley G., Developments in the global hydrogen market: The spectrum of hydrogen colours, Fuel Cell Bull, 2020 (2020) 16-22.
  • Zhang X., Sa R., Yang S., Zhou F., Jiang Z., Wang R., A non-carbon catalyst support upgrades the intrinsic activity of ruthenium for hydrogen evolution electrocatalysis via strong interfacial electronic effects, Nano Energy, 75 (2020) 104981.
  • Demir D.D., Salcı A., Solmaz R., Preparation, characterization and hydrogen production performance of MoPd deposited carbon felt/Mo electrodes, Int. J. Hydrogen Energy, 43 (2018) 10530-10539.
  • Yu R., Yuan X., Rising of boron nitride: A review on boron nitride nanosheets enhanced anti-corrosion coatings, Prog. Org. Coat., 186 (2024) 107990.
  • Verma C., Ebenso E.E., Quraishi M.A., Corrosion inhibitors for ferrous and nonferrous metals and alloys in ionic sodium chloride solutions: A review, J. Mol. Liq., 248 (2017) 927–942.
  • Zhao X., Yuan S., Jin Z., Zhu Q., Zheng M., Jiang Q., Song H., Duan J., Fabrication of composite coatings with core-shell nanofibers and their mechanical properties, anticorrosive performance, and mechanism in seawater, Prog. Org. Coating, 149 (2020) 105893.
  • Chu J.H., Tong L.B., Wen M., Jiang Z.H., Zou D.N., Liu S.F., Zhang H.J., Inhibited corrosion activity of biomimetic graphene-based coating on Mg alloy through a cerium intermediate layer, Carbon, 161 (2020) 577–589.
  • Arslanhan S., Yıldız R., Döner A., Experimental and theoretical investigation of adsorption and inhibition properties of 2-Amino-1,3,5-triazine-4,6-dithiol against corrosion in hydrochloric acid solution on mild steel, J. Indian Chem. Soc., 100 (2023) 101087.
  • Pyun C.H., Park S.M., In situ spectro electrochemical studies on anodic-oxidation of copper in alkaline-solution, J Electrochem Soc., 133 (1986) 2024-2030.
  • Marioli J.M., Kuwana T., Electrochemical characterization of carbohydrate oxidation at copper electrode, Electrochim Acta, 37 (1992) 1187-1197.
  • Ganci F., Cusumano V., Livreri P., Aiello G., Sunseri C., Inguanta R., Nanostructured Ni-Co alloy electrodes for both hydrogen and oxygen evolution reaction in alkaline electrolyzer, Int. J. Hydrogen Energy, 46 (2021) 10082-10092.
  • Shetty A.R., Hegde A.C., Effect of TiO2 on electrocatalytic behavior of Ni-Mo alloy coating for hydrogen energy, Sci. Energy Technol., 1 (2018) 97–105.
  • Toprak Döşlü S., Döner A., Yıldız R., Electrocatalysis property of CuZn electrode with Pt and Ru decoration, Int. J. Hydrogen Energy, 46 (2021) 22409-22421.
  • Elias L., Scott K., Hegde A.C., Electrolytic Synthesis and Characterization of Electrocatalytic Ni-W Alloy, J. Mater. Eng. Perform., 24 (2015) 4182–4191.
  • Yang Y., Yu Y., Li J., Chen Q., Du Y., Rao P., Li R., Jia C., Kang Z., Deng P., Shen Y., Tian X., Engineering Ruthenium-Based Electrocatalysts for Effective Hydrogen Evolution Reaction, Nano-Micro Lett., 13 160 (2021).
  • Sapountzi F.M., Garcia J.M., Weststrate C.J., Fredriksson H.O.A., Niemantsverdriet J.W., Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas, Prog. Energy Combust., Sci. 58 (2017) 1–35.
  • Wendt H., Spinacé E.V., Neto e Marcelo Linardi A.O., Electrocatalysis and electrocatalysts for low temperature fuel cells: fundamentals, state of the art, research and development,” Quim. Nova, 28 (6) (2005) 1066–1075.
  • Jiang Z., Ren J., Li Y., Zhang X., Zhang P., Huang J., Du C., Chen J., Low-cost high-performance hydrogen evolution electrocatalysts based on Pt-CoP polyhedral with low Pt loading in both alkaline and neutral media, Dalton Trans., 48(24) (2019) 8920–8930.
  • Shi Y., Zhang D., Huang H., Miao H., Wu X., Zhao H., Zhan T., Chen X., Lai J., Wang L., Mixture phases engineering of PtFe nanofoams for efficient hydrogen evolution, Small 18 (2022) 2106947.
  • Cao Z., Chen Q., Zhang J., Li H., Jiang Y., Shen S., Fu G., Lu B.A., Xie Z., Zheng L., Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction, Nat. Commun., 8 (2017) 15131.
  • Kutyła D., Salcı A., Kwiecinska A., Kołczyk-Siedlecka K., Kowalik R., Zabinski P., Solmaz R., Catalytic activity of electrodeposited ternary Co-Ni-Rh thin films for water splitting process, Int. J. Hydrogen Energy, 45 (2020) 34805-34817.
  • Lao M., Rui K., Zhao G., Cui P., Zheng X., Dou S.X., Sun W., Platinum/Nickel bicarbonate heterostructures towards accelerated hydrogen evolution under alkaline conditions, Angew Chem Int Ed Engl, 58, (2019) 5432 -5437.
  • Yıldız R., Arslanhan S., Döner A., A study for hydrogen evolution on Pt–MnCu electrocatalyst, Int. J. Hydrogen Energy, 52, (2024) 1239-1246.
  • Mosallanezhad A., Wei C., Koudakan P.A., Fang Y., Niu S., Bian Z., Liu B., Huang T., Pan H., Wang G., Interfacial synergies between single-atomic Pt and CoS for enhancing hydrogen evolution reaction catalysis, Appl. Catal., B, 315 (2022) 121534.
  • Kim T., Roy S.B., Moon S., Yoo S., Choi H., Parale V.G., Kim Y., Lee J., Jun S.C., Kang K., Chun S.H., Kanamori K., Park H.H., Highly dispersed Pt clusters on F-Doped Tin(IV) oxide aerogel matrix: An ultra-robust hybrid catalyst for enhanced hydrogen evolution, ACS Nano, 16 (2022) 1625-1638.
  • Battiato S., Bruno L., Terrasi A., Mirabella S., Superior performances of electrolessdeposited Ni–P films decorated with an ultralow content of Pt for water-splitting reactions, ACS Appl. Energy Mater., 5 (2022) 2391–2399.
  • Chauhan N., Choi H.W., Kumar M., Yoon D.H., Nanoarchitectonics Pt/NiCo in a carbon matrix as highly efficient electrocatalyst for hydrogen evolution reaction, Electrochim. Acta, 460 (2023) 142634.
  • Yıldız R., Doğru Mert B., Karazehir T., Gurdal Y., Toprak Döşlü S., Experimental and theoretical study on hydrogen production by using Ag nanoparticle-decorated graphite/Ni cathode, Int. J. Energy Res., 45 (2021) 4068–4080.
  • Adam Y.S., Telli E., Farsak M., Kardaş G., Hydrogen production activity of nickel deposited graphite electrodes doped with CoW and CoIr nanoparticles, Int. J. Hydrogen Energy, 48 (2023) 31844-31854.
  • Luo W., Gan J., Huang Z., Chen W., Qian G., Zhou X., Duan X., Boosting HER performance of Pt-based catalysts immobilized on functionalized vulcan carbon by atomic layer deposition, Front. Mater., 6 (2019) 251.
  • Bocris J.O.’M., Reddy A.K.N., Modern Electrochemistry, vol. 2, New York, Plenum press, (1977).
  • Lin Q., Chen G., Zou S., Zhou W., Fu X., Shi S., Electrochemical impedance spectroscopy (EIS) explanation of single crystal Cu(100)/Cu(111) in different corrosion stages, Materials, 16 (2023) 1740.
  • Özcan M., Karadağ E., Dehri İ, Investigation of adsorption characteristics of methionine at mild steel/sulfuric acid interface: An experimental and theoretical study, Colloids Surf. A Physicochem. Eng. Aspects, 316 (2008) 55–61.
  • Gan C.L., Liu X.F., Huang H.Y., Xie J.X., Electrochemical corrosion performance of continuous columnar-grained BFe10-1-1 alloy, Chin. J. Eng., 33(12) (2011) 1492–1500.
  • Sherif E.M., Erasmus R.M., Comins J.D., Corrosion of copper in aerated synthetic sea water solutions and its inhibition by 3-amino-1,2,4-triazole, J. Colloid Interface Sci., 309 (2007) 470–477.
  • Kunze J., Maurice V., Klein L.H., Strehblow H.H., Marcus P., In situ STM study of the duplex passive films formed on Cu(111) and Cu(001) in 0.1 M NaOH, Corrosion Sci, 46 (2004) 245–264.
There are 40 citations in total.

Details

Primary Language English
Subjects Electrochemistry, Catalysis and Mechanisms of Reactions
Journal Section Natural Sciences
Authors

Ali Döner 0000-0002-3403-5370

Serap Toprak Döşlü 0000-0002-5455-8179

Publication Date September 30, 2025
Submission Date November 18, 2024
Acceptance Date June 25, 2025
Published in Issue Year 2025 Volume: 46 Issue: 3

Cite

APA Döner, A., & Toprak Döşlü, S. (2025). Hydrogen Evolution and Corrosion Behaviors of Cu/Co-Pt As an Effective Electrocatalyst. Cumhuriyet Science Journal, 46(3), 447-456. https://doi.org/10.17776/csj.1587512