Research Article
BibTex RIS Cite

Morphological, Transcriptional, and Epigenetics Alterations due to L-arginine and L-methionine Treatment in Fusarium culmorum

Year 2025, Volume: 46 Issue: 2, 257 - 263, 30.06.2025
https://doi.org/10.17776/csj.1638941

Abstract

Fusarium culmorum is a worldwide phytopathogenic fungus of small-grain cereals. Struggling strategies such as fungicide treatment and biocontrol agent usage are not long-term solutions due to the potential adverse effects on ecological environment and resistance development in fungal pathogens. In this study, potential suppressive effects of amino acid supplementation on F. culmorum were investigated. Potato dextrose agar (PDA) medium amended with 1 mg mL-1 and 2 mg mL-1 concentrations of L-arginine and L-methionine were used as experimental sets. PDA with no supplement and PDA amended with nicotinamide of 1 mg mL-1 and 2 mg mL-1 concentrations were used as negative and positive control sets, respectively. While L-arginine treatment led to significant increase in linear growth rate (LGR) with p<0.01, L-methionine decreased LGR values (p<0.001). Coupled Restriction Enzyme Digestion-Random Amplification (CRED-RA) essays yielded very similar alterations in terms of genomic template stability within the experiment groups of L-arginine and L-methionine treated sets. UPGMA-dendrogram (unweighted pair group method with arithmetic mean) revealed co-clustering of L-methionine and nicotinamide treated sets. Methylation-specific PCR (MSP) analysis showed that there was Type-II and Type-III methylation present in 2 mg mL-1 L-methionine treated sets. Gene expression analysis showed that L-methionine and L-arginine treatment led to contrast alteration in expressions of tri6 and FcStuA genes with significant differences (p<0.05-p<0.0001). Our results showed that L-methionine treatment could suppress potential aggressiveness of F. culmorum at phenotypic, epigenetics, and transcriptional levels

Supporting Institution

This study was supported by Scientific and Technological Research Council of Türkiye (TUBITAK) under Grant Number 1919B012310447 (2209-A). The authors thank TUBITAK for their support.

Project Number

1919B012310447 (2209-A)

Thanks

This study was supported by Scientific and Technological Research Council of Türkiye (TUBITAK) under Grant Number 1919B012310447 (2209-A). The authors thank TUBITAK for their support.

References

  • [1] Dean R., Van Kan J.A.L., Pretorius Z.A., Hammond‐Kosack K.E., Di Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J., Foster G.D., The Top 10 fungal pathogens in molecular plant pathology, Mol. Plant Pathol., 13 (2012) 414–30.
  • [2] Oğuz H., Mikotoksinler ve önemi, Turk Klin. J. Vet. Sci. Pharmacol Toxicol-Spec Top., 3 (2017) 113–9.
  • [3] Oruç H.H., Mikotoksinler ve tanı yöntemleri, Uludağ Üniversitesi Vet. Fakültesi Derg., 24 (2005) 105–110.
  • [4] Bakır Ö., Sekonder metabolitler ve rolleri, Uluslar Anadolu Ziraat Mühendisliği Bilim Derg., 2 (2020) 39–45.
  • [5] Cook R.J., Making Greater Use of Introduced Microorganisms for Biological Control of Plant Pathogens, Annu. Rev. Phytopathol., 31 (1993) 53–80.
  • [6] Moya-Elizondo E.A., Jacobsen B.J., Integrated management of Fusarium crown rot of wheat using fungicide seed treatment, cultivar resistance, and induction of systemic acquired resistance (SAR). Biol. Control, 92 (2016) 153–163.
  • [7] Zubrod J.P., Bundschuh M., Arts G., Brühl C.A., Imfeld G., Knäbel A., Payraudeau S., Rasmussen J.J., Rohr J., Scharmüller A., Smalling K., Stehle S., Schulz, R., Schäfer, R.B., Fungicides: An Overlooked Pesticide Class? Environ. Sci. Technol., 53 (2019) 3347–3365.
  • [8] Alisaac E., Mahlein A.K., Fusarium head blight on wheat: biology, modern detection and diagnosis and integrated disease management, Toxins 15 (2023) 192.
  • [9] Matny O.N., Fusarium head blight and crown rot on wheat & barley: losses and health risks, Adv. Plants Agric. Res., 2 (2015) 00039.
  • [10] Rampersad S.N., Pathogenomics and management of Fusarium diseases in plants, Pathogens, 9 (2020) 340.
  • [11] Bai G., Shaner G., Management and resıstance ın wheat and barley to fusarıum head blıght, Annu. Rev. Phytopathol., 42 (2004) 135–161.
  • [12] Beccari G., Covarelli L., Nicholson P., Infection processes and soft wheat response to root rot and crown rot caused by Fusarium culmorum, Plant Pathol., 60 (2011) 671–684.
  • [13] Çepni E., Tunalı B., Gürel F., Genetic diversity and mating types of Fusarium culmorum and Fusarium graminearum originating from different agro-ecological regions in Turkey: Genetic diversity of Fusarium spp., J. Basic Microbiol., 53 (2013) 686–694.
  • [14] Wang H., Hwang S.F., Eudes F., Chang K.F., Howard R.J., Turnbull G.D., Trichothecenes and aggressiveness of Fusarium graminearum causing seedling blight and root rot in cereals, Plant Pathol., 55 (2006) 224–230.
  • [15] Desjardins A.E., Proctor R.H., Molecular biology of Fusarium mycotoxins, Int. J. Food Microbiol., 119 (2007) 47–50.
  • [16] Foroud N.A., Eudes F., Trichothecenes in cereal grains, Int. J. Mol. Sci., 10 (2009) 147–173.
  • [17] [Wang C., Zhang S., Hou R., Zhao Z., Zheng Q., Xu Q., Zheng, D., Wang, G., Liu H., Gao X., Ma J.W., Kistler H.C., Kang Z., Zu J.R., Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum, PLoS Pathog., 7 (2011) e1002460.
  • [18] Yli-Mattila T., Rämö S., Hietaniemi V., Hussien T., Carlobos-Lopez A.L., Cumagun C.J.R., Molecular quantification and genetic diversity of toxigenic Fusarium species in Northern Europe as compared to those in Southern Europe, Microorganisms 1 (2013) 162–174.
  • [19] Saharan M.S., Kumar J., Sharma A.K., Nagarajan S., Fusarium head blight (FHB) or head scab of wheat-a review, PNAS Biol. Sci., 70(3) (2004) 255-268.
  • [20] Yli-Mattila T., Gagkaeva T., Ward T.J., Aoki T., Kistler H.C., O’Donnell K., A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East, Mycologia, 101 (2009) 841–852.
  • [21] Saharan M.S., Current status of resistant source to Fusarium head blight disease of wheat: a review, Indian Phytopathol., 72 (2020) 3–9.
  • [22] Bolanos-Carriel C., Wegulo S.N., Baenziger P.S., Funnell-Harris D., Hallen-Adams H.E., Eskridge K.M., Effects of fungicide chemical class, fungicide application timing, and environment on Fusarium head blight in winter wheat, Eur. J. Plant Pathol., 158 (2020) 667–79.
  • [23] Noel Z.A., Roze L.V., Breunig M., Trail F., Endophytic Fungi as a Promising Biocontrol Agent to Protect Wheat from Fusarium graminearum Head Blight, Plant Dis., 106 (2022) 595–602.
  • [24] Różewicz M., Wyzińska M., Grabiński J., The most important fungal diseases of cereals—Problems and possible solutions, Agronomy, 11 (2021) 714.
  • [25] Lysøe E., Pasquali M., Breakspear A., Kistler H.C., The Transcription Factor FgStuAp Influences Spore Development, Pathogenicity, and Secondary Metabolism in Fusarium graminearum, Mol. Plant-Microbe Interactions, 24 (2011) 54–67.
  • [26] Xu C., Wang J., Zhang Y., Luo Y., Zhao Y., Chen Y, Ma, Z., The transcription factor FgStuA regulates virulence and mycotoxin biosynthesis via recruiting the SAGA complex in Fusarium graminearum, New Phytol., 240 (2023) 2455–2467.
  • [27] Niu G., Yang Q., Liao Y., Sun D., Tang Z., Wang G., Xu M., Wang C., Kang J., Advances in understanding Fusarium graminearum: Genes involved in the regulation of sexual development, pathogenesis, and deoxynivalenol biosynthesis, Genes, 15 (2024) 475.
  • [28] Nei M., Li W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci., 76 (1979) 5269–5273.
  • [29] Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method, Methods, 25 (2001) 402–408.
  • [30] Gong X., Fu Y., Jiang D., Li G., Yi X., Peng Y., L-arginine is essential for conidiation in the filamentous fungus Coniothyrium minitans, Fungal Genet. Biol., 44 (2007) 1368–1379.
  • [31] Wang D., Meng L., Zhang H., Liu R., Zhu Y., Tan X., Wu Y., Gao Q., Ren X., Kong Q., Exogenous L-Arginine Enhances Pathogenicity of Alternaria alternata on Kiwifruit by Regulating Metabolisms of Nitric Oxide, Polyamines, Reactive Oxygen Species (ROS), and Cell Wall Modification, J. Fungi, 10 (2024) 801.
  • [32] Wenhao L., Shikai H.U., Zhonghua S., Xiangjin W.E.I., Gui’ai J., Gaoneng S., Effects of Exogenous Amino Acids on the Mycelial Growth and Fumonisins Production of Fusarium proliferatum, China Rice, 30 (2024) 47.
  • [33] Alwan A.H., Twaij B.M., Alwan B.H., Induction of Allium sativum tissue culture by l-methionine and gibberellic acid and study of the effect of extract against fungal plant pathogens, Plant Arch., 20 (2020) 2839–2844.
  • [34] El-Fawy M.M., Abdel-Fatah B.E., Saeed A.S., Abo-Elnaga H.I.G., Amein A.M.M., Effect of soil drenching with humic acid, L-methionine and phosphoric acid on Fusarium wilt and induction of enzymes related to oxidative stress and defense in tomato plants, Arch. Phytopathol. Plant Prot., 54 (2021) 1876–1895.
  • [35] Harshitha K., Nair R.A., Evaluation of DNA Methylation Changes by CRED–RA Analysis Following Prednisone Treatment of Endophyte, Fusarium oxysporum, Indian J. Microbiol., 60 (2020) 254–258.
  • [36] Gazdağlı A., Sefer Ö., Yörük E., Varol G.İ., Teker T., Albayrak G., Investigation of camphor effects on Fusarium graminearum and F. culmorum at different molecular levels, Pathogens, 7 (2018) 90.
  • [37] Yörük E., Özkale E., Sefer Ö., Özsoy E., Trichoderma atroviride triggers alterations at epigenetics, transcripts, oxidative stress, and apoptosis levels on Fusarium graminearum, J. Plant Pathol., 104 (2022) 1039–1047.
  • [38] Albayrak G., Yörük E., Teker T., Sefer Ö., Investigation of antifungal activities of myrcene on Fusarium reference strains. Arch. Microbiol., 205 (2023) 82.
  • [39] Pasquali M., Spanu F., Scherm B., Balmas V., Hoffmann L., Hammond-Kosack K.E., Beyer M., Migheli Q., FcStuA from Fusarium culmorum controls wheat foot and root rot in a toxin dispensable manner, PLoS One, 8 (2013) e57429.
  • [40] Rath M., Crenshaw N.J., Lofton L.W., Glenn A.E., Gold S.E., FvSTUA is a Key Regulator of Sporulation, Toxin Synthesis, and Virulence in Fusarium verticillioides, Mol. Plant-Microbe Interactions, 33 (2020) 958–971.
  • [41] Pinson-Gadais L., Richard-Forget F., Frasse P., Barreau C., Cahagnier B., Richard-Molard D., Bakan B., Magnesium represses trichothecene biosynthesis and modulates Tri5, Tri6, and Tri12 genes expression in Fusarium graminearum, Mycopathologia, 165 (2008) 51–59.
  • [42] Boutigny A.L., Barreau C., Atanasova-Penichon V., Verdal-Bonnin M.N., Pinson-Gadais L., Richard-Forget F., Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures, Mycol Res., 113 (2009) 746–753.
  • [43] Covarelli L., Turner A.S., Nicholson P., Repression of deoxynivalenol accumulation and expression of Tri genes in Fusarium culmorum by fungicides in vitro, Plant Pathol., 53 (2004) 22–28.
Year 2025, Volume: 46 Issue: 2, 257 - 263, 30.06.2025
https://doi.org/10.17776/csj.1638941

Abstract

Project Number

1919B012310447 (2209-A)

References

  • [1] Dean R., Van Kan J.A.L., Pretorius Z.A., Hammond‐Kosack K.E., Di Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J., Foster G.D., The Top 10 fungal pathogens in molecular plant pathology, Mol. Plant Pathol., 13 (2012) 414–30.
  • [2] Oğuz H., Mikotoksinler ve önemi, Turk Klin. J. Vet. Sci. Pharmacol Toxicol-Spec Top., 3 (2017) 113–9.
  • [3] Oruç H.H., Mikotoksinler ve tanı yöntemleri, Uludağ Üniversitesi Vet. Fakültesi Derg., 24 (2005) 105–110.
  • [4] Bakır Ö., Sekonder metabolitler ve rolleri, Uluslar Anadolu Ziraat Mühendisliği Bilim Derg., 2 (2020) 39–45.
  • [5] Cook R.J., Making Greater Use of Introduced Microorganisms for Biological Control of Plant Pathogens, Annu. Rev. Phytopathol., 31 (1993) 53–80.
  • [6] Moya-Elizondo E.A., Jacobsen B.J., Integrated management of Fusarium crown rot of wheat using fungicide seed treatment, cultivar resistance, and induction of systemic acquired resistance (SAR). Biol. Control, 92 (2016) 153–163.
  • [7] Zubrod J.P., Bundschuh M., Arts G., Brühl C.A., Imfeld G., Knäbel A., Payraudeau S., Rasmussen J.J., Rohr J., Scharmüller A., Smalling K., Stehle S., Schulz, R., Schäfer, R.B., Fungicides: An Overlooked Pesticide Class? Environ. Sci. Technol., 53 (2019) 3347–3365.
  • [8] Alisaac E., Mahlein A.K., Fusarium head blight on wheat: biology, modern detection and diagnosis and integrated disease management, Toxins 15 (2023) 192.
  • [9] Matny O.N., Fusarium head blight and crown rot on wheat & barley: losses and health risks, Adv. Plants Agric. Res., 2 (2015) 00039.
  • [10] Rampersad S.N., Pathogenomics and management of Fusarium diseases in plants, Pathogens, 9 (2020) 340.
  • [11] Bai G., Shaner G., Management and resıstance ın wheat and barley to fusarıum head blıght, Annu. Rev. Phytopathol., 42 (2004) 135–161.
  • [12] Beccari G., Covarelli L., Nicholson P., Infection processes and soft wheat response to root rot and crown rot caused by Fusarium culmorum, Plant Pathol., 60 (2011) 671–684.
  • [13] Çepni E., Tunalı B., Gürel F., Genetic diversity and mating types of Fusarium culmorum and Fusarium graminearum originating from different agro-ecological regions in Turkey: Genetic diversity of Fusarium spp., J. Basic Microbiol., 53 (2013) 686–694.
  • [14] Wang H., Hwang S.F., Eudes F., Chang K.F., Howard R.J., Turnbull G.D., Trichothecenes and aggressiveness of Fusarium graminearum causing seedling blight and root rot in cereals, Plant Pathol., 55 (2006) 224–230.
  • [15] Desjardins A.E., Proctor R.H., Molecular biology of Fusarium mycotoxins, Int. J. Food Microbiol., 119 (2007) 47–50.
  • [16] Foroud N.A., Eudes F., Trichothecenes in cereal grains, Int. J. Mol. Sci., 10 (2009) 147–173.
  • [17] [Wang C., Zhang S., Hou R., Zhao Z., Zheng Q., Xu Q., Zheng, D., Wang, G., Liu H., Gao X., Ma J.W., Kistler H.C., Kang Z., Zu J.R., Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum, PLoS Pathog., 7 (2011) e1002460.
  • [18] Yli-Mattila T., Rämö S., Hietaniemi V., Hussien T., Carlobos-Lopez A.L., Cumagun C.J.R., Molecular quantification and genetic diversity of toxigenic Fusarium species in Northern Europe as compared to those in Southern Europe, Microorganisms 1 (2013) 162–174.
  • [19] Saharan M.S., Kumar J., Sharma A.K., Nagarajan S., Fusarium head blight (FHB) or head scab of wheat-a review, PNAS Biol. Sci., 70(3) (2004) 255-268.
  • [20] Yli-Mattila T., Gagkaeva T., Ward T.J., Aoki T., Kistler H.C., O’Donnell K., A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East, Mycologia, 101 (2009) 841–852.
  • [21] Saharan M.S., Current status of resistant source to Fusarium head blight disease of wheat: a review, Indian Phytopathol., 72 (2020) 3–9.
  • [22] Bolanos-Carriel C., Wegulo S.N., Baenziger P.S., Funnell-Harris D., Hallen-Adams H.E., Eskridge K.M., Effects of fungicide chemical class, fungicide application timing, and environment on Fusarium head blight in winter wheat, Eur. J. Plant Pathol., 158 (2020) 667–79.
  • [23] Noel Z.A., Roze L.V., Breunig M., Trail F., Endophytic Fungi as a Promising Biocontrol Agent to Protect Wheat from Fusarium graminearum Head Blight, Plant Dis., 106 (2022) 595–602.
  • [24] Różewicz M., Wyzińska M., Grabiński J., The most important fungal diseases of cereals—Problems and possible solutions, Agronomy, 11 (2021) 714.
  • [25] Lysøe E., Pasquali M., Breakspear A., Kistler H.C., The Transcription Factor FgStuAp Influences Spore Development, Pathogenicity, and Secondary Metabolism in Fusarium graminearum, Mol. Plant-Microbe Interactions, 24 (2011) 54–67.
  • [26] Xu C., Wang J., Zhang Y., Luo Y., Zhao Y., Chen Y, Ma, Z., The transcription factor FgStuA regulates virulence and mycotoxin biosynthesis via recruiting the SAGA complex in Fusarium graminearum, New Phytol., 240 (2023) 2455–2467.
  • [27] Niu G., Yang Q., Liao Y., Sun D., Tang Z., Wang G., Xu M., Wang C., Kang J., Advances in understanding Fusarium graminearum: Genes involved in the regulation of sexual development, pathogenesis, and deoxynivalenol biosynthesis, Genes, 15 (2024) 475.
  • [28] Nei M., Li W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci., 76 (1979) 5269–5273.
  • [29] Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method, Methods, 25 (2001) 402–408.
  • [30] Gong X., Fu Y., Jiang D., Li G., Yi X., Peng Y., L-arginine is essential for conidiation in the filamentous fungus Coniothyrium minitans, Fungal Genet. Biol., 44 (2007) 1368–1379.
  • [31] Wang D., Meng L., Zhang H., Liu R., Zhu Y., Tan X., Wu Y., Gao Q., Ren X., Kong Q., Exogenous L-Arginine Enhances Pathogenicity of Alternaria alternata on Kiwifruit by Regulating Metabolisms of Nitric Oxide, Polyamines, Reactive Oxygen Species (ROS), and Cell Wall Modification, J. Fungi, 10 (2024) 801.
  • [32] Wenhao L., Shikai H.U., Zhonghua S., Xiangjin W.E.I., Gui’ai J., Gaoneng S., Effects of Exogenous Amino Acids on the Mycelial Growth and Fumonisins Production of Fusarium proliferatum, China Rice, 30 (2024) 47.
  • [33] Alwan A.H., Twaij B.M., Alwan B.H., Induction of Allium sativum tissue culture by l-methionine and gibberellic acid and study of the effect of extract against fungal plant pathogens, Plant Arch., 20 (2020) 2839–2844.
  • [34] El-Fawy M.M., Abdel-Fatah B.E., Saeed A.S., Abo-Elnaga H.I.G., Amein A.M.M., Effect of soil drenching with humic acid, L-methionine and phosphoric acid on Fusarium wilt and induction of enzymes related to oxidative stress and defense in tomato plants, Arch. Phytopathol. Plant Prot., 54 (2021) 1876–1895.
  • [35] Harshitha K., Nair R.A., Evaluation of DNA Methylation Changes by CRED–RA Analysis Following Prednisone Treatment of Endophyte, Fusarium oxysporum, Indian J. Microbiol., 60 (2020) 254–258.
  • [36] Gazdağlı A., Sefer Ö., Yörük E., Varol G.İ., Teker T., Albayrak G., Investigation of camphor effects on Fusarium graminearum and F. culmorum at different molecular levels, Pathogens, 7 (2018) 90.
  • [37] Yörük E., Özkale E., Sefer Ö., Özsoy E., Trichoderma atroviride triggers alterations at epigenetics, transcripts, oxidative stress, and apoptosis levels on Fusarium graminearum, J. Plant Pathol., 104 (2022) 1039–1047.
  • [38] Albayrak G., Yörük E., Teker T., Sefer Ö., Investigation of antifungal activities of myrcene on Fusarium reference strains. Arch. Microbiol., 205 (2023) 82.
  • [39] Pasquali M., Spanu F., Scherm B., Balmas V., Hoffmann L., Hammond-Kosack K.E., Beyer M., Migheli Q., FcStuA from Fusarium culmorum controls wheat foot and root rot in a toxin dispensable manner, PLoS One, 8 (2013) e57429.
  • [40] Rath M., Crenshaw N.J., Lofton L.W., Glenn A.E., Gold S.E., FvSTUA is a Key Regulator of Sporulation, Toxin Synthesis, and Virulence in Fusarium verticillioides, Mol. Plant-Microbe Interactions, 33 (2020) 958–971.
  • [41] Pinson-Gadais L., Richard-Forget F., Frasse P., Barreau C., Cahagnier B., Richard-Molard D., Bakan B., Magnesium represses trichothecene biosynthesis and modulates Tri5, Tri6, and Tri12 genes expression in Fusarium graminearum, Mycopathologia, 165 (2008) 51–59.
  • [42] Boutigny A.L., Barreau C., Atanasova-Penichon V., Verdal-Bonnin M.N., Pinson-Gadais L., Richard-Forget F., Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures, Mycol Res., 113 (2009) 746–753.
  • [43] Covarelli L., Turner A.S., Nicholson P., Repression of deoxynivalenol accumulation and expression of Tri genes in Fusarium culmorum by fungicides in vitro, Plant Pathol., 53 (2004) 22–28.
There are 43 citations in total.

Details

Primary Language English
Subjects Gene Expression
Journal Section Natural Sciences
Authors

Fatma Berra Yücesan 0009-0007-3289-8731

Özlem Sefer 0000-0002-2711-5938

Emre Yörük 0000-0003-2770-0157

Project Number 1919B012310447 (2209-A)
Publication Date June 30, 2025
Submission Date February 13, 2025
Acceptance Date May 11, 2025
Published in Issue Year 2025Volume: 46 Issue: 2

Cite

APA Yücesan, F. B., Sefer, Ö., & Yörük, E. (2025). Morphological, Transcriptional, and Epigenetics Alterations due to L-arginine and L-methionine Treatment in Fusarium culmorum. Cumhuriyet Science Journal, 46(2), 257-263. https://doi.org/10.17776/csj.1638941