Research Article
BibTex RIS Cite

Sargassum sp., Ulva sp. ve Schizochytrium sp.’nin Kloroform, Aseton ve Metanol Ekstraktlarının Toplam Fenolik Miktarlarının Belirlenmesiı

Year 2025, Volume: 46 Issue: 2, 292 - 297, 30.06.2025
https://doi.org/10.17776/csj.1629561

Abstract

Mevcut çalışmada, Sargassum sp., Ulva sp. ve Schizochytrium sp.’nin kloroform, aseton ve metanol gibi farklı solventlerle ekstrakte edilmesi sonucu ortaya çıkan biyoaktif içeriğin toplam fenolik miktarlarının belirlenmesi amaçlanmıştır. Aynı zamanda Sargassum sp., Ulva sp. ve Schizochytrium sp.’nin biyokimyasal kompozisyonları, farklı solventlerden alınan ekstraksiyon ürünü ve çözülebilir protein konsantrasyonlarıda araştırılmıştır. Sargassum sp., Ulva sp. ve Schizochytrium sp.’nin kloroform, aseton ve metanol ekstraktlarından elde edilen toplam fenolik içerikleri sırasıyla 136,40±1,93 mg GA/g ekstrakt -3,61±0,18 mg GA/g ekstrakt -7,83±0,03 mg GA/g ekstrakt, 5,25±0,07 mg GA/g ekstrakt -4,27±0,1 mg GA/g ekstrakt -14,5±0,06 mg GA/g ekstrakt 15,7±0,27 mg GA/g ekstrakt -2,6±0,04 mg GA/g ekstrakt -14,84±0,11 mg GA/g ekstrakt olarak belirlenmiş olup, değerler arasındaki farklılıklar istatistiksel olarak önemli bulunmuştur (p<0,05). Sargassum sp., Ulva sp. ve Schizochytrium sp.’nin kloroform, aseton ve metanol ekstraktlarından elde edilen ekstraksiyon ürün miktarları sırasıyla %2,2±0,06-%4,35±0,07-%6,68±0,14, %2,96±0,02-%4,33±0,09-%9,74±0,16 ve %14,96±0,24-%10,03±0,004-%19,03±0,3 olarak belirlenmiştir (p<0,05). Sargassum sp., Ulva sp. ve Schizochytrium sp.’nin kuru madde, protein, kül ve lipit gibi biyokimyasal parametreleri sırasıyla %94,05±0,01 -%20,92±0,35 -%26,55±1,77-%1,36±0,01, %94,1±0,005-%17,04±0,04-%28,11±0,06 -%2,66±0,05 ve %95,1±0,05- %23,01±0,07- %9,59±0,787- %25,5±0,21 olarak bulunmuştur (p<0,05). Sargassum sp., Ulva sp. ve Schizochytrium sp.’nin distile sudaki çözülebilir protein konsantrasyonu sırasıyla 66,45±0,5mg/g, 83,38±0,88 mg/g ve 115,95±0,89 mg/g olarak tespit edilmiştir (p<0,05). Schizochytrium sp.’nin kloroform ve metanol ekstrakları iyi ekstraksiyon ürünü ve fenolik içeriğe sahipti. Buna karşılık Sargassum sp.’nin kloroform ekstraktı en yüksek fenolik içeriğe sahipken ekstraksiyon ürünü en düşük seviyedeydi. Test edilen 3 türün aseton ekstrakları düşük fenolik aktivite sergiledi.

References

  • [1] Guiry M.D., AlgaeBase GGM, World-wide Electronic Publication, National University of Ireland, Galway, (2021).
  • [2] FAO, The State of World Fisheries and Aquaculture. Towards Blue Transformation, Rome: FAO, (2022).
  • [3] Cai, J., Lovatelli, A., Aguilar-Manjarrez, J., Cornish, L., Dabbadie, L., Desrochers, A., Diffey, S., Garrido Gamarro, E., Geehan, J., Hurtado, A., Lucente, D., Mair, G., Miao, W., Potin, P., Przybyla, C., Reantaso, M., Roubach, R., Tauati, M., Yuan, X., Seaweeds and microalgae: an overview for unlocking their potential in global aquaculture development, FAO Fisheries and Aquaculture Circular No. 1229, Rome: FAO, (2021).
  • [4] Yu, J. H., Wang, Y., Sun, J., Bian, F., Chen, G., Zhang, Y., Wu, Y. J., Antioxidant activity of alcohol aqueous extracts of Crypthecodinium cohnii and Schizochytrium sp., Journal of Zhejiang University. Science. B, 18(9) (2017) 797.
  • [5] La, A. L. T. Z., Pierce, K. M., Liu, W. H., Gao, S. T., Bu, D. P., Ma, L., Supplementation with Schizochytrium sp. enhances growth performance and antioxidant capability of dairy calves before weaning, Animal Feed Science and Technology, 271 (2021) 114779.
  • [6] Stengel, D. B., Connan, S., Popper, Z. A., Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application, Biotechnology Advances, 29(5) (2011) 483–501.
  • [7] Jégou, C., Connan, S., Bihannic, I., Cérantola, S., Guérard, F., Stiger-Pouvreau, V., Phlorotannin and pigment content of native canopy-forming Sargassaceae species living in intertidal rockpools in Brittany (France): any relationship with their vertical distribution and phenology?, Marine Drugs, 19(9) (2021) 504–524.
  • [8] Yılmaz, M., Türker, G., Ak, İ., The effect of different solvents on antioxidant properties of Gongolaria barbata (Phaeophyceae), Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 4(2) (2021) 197–201.
  • [9] Wang, B. G., Zhang, W. W., Duan, X. J., Li, X. M., In vitro antioxidative activities of extract and semipurified fractions of the marine red alga, Rhodomela confervoides (Rhodomelaceae), Food Chemistry, 113 (2009) 1101–1105.
  • [10] Andrade, L. M., Andrade, C. J., Dias, M., Nascimento, C., Mendes, M. A., Chlorella and spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements, Nutraceuticals and Food Supplements, 6(1) (2018) 45–58.
  • [11] Sadeghi, A., Rajabiyan, A., Nabizade, N., Meygolinezhad, N., Ahmady, A. Z., Seaweed-derived phenolic compounds as diverse bioactive molecules: A review on identification, application, extraction and purification strategies, International Journal of Biological Macromolecules, (2024) 131147.
  • [12] Singleton, V. L., Orthofer, R., Lamuela-Raventós, R. M., Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In: Methods in Enzymology, Academic Press, 299 (1999) 152–178.
  • [13] Bligh, E. G., Dyer, W. J., A rapid method of total lipid extraction and purification, Canadian Journal of Biochemistry and Physiology, 37(8) (1959) 911–917.
  • [14] AOAC, Animal Feed. In: Official Methods of Analysis, (1997), 30 pp.
  • [15] Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding, Analytical Biochemistry, 72 (1976) 248–254.
  • [16] El-Baky, H. H. A., El-Baz, F. K., El-Baroty, G. S., Natural preservative ingredient from marine alga Ulva lactuca L., International Journal of Food Science and Technology, 44(9) (2009) 1688–1695.
  • [17] Kumar, M., Gupta, V., Kumari, P., Reddy, C. R. K., Jha, B., Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds, Journal of Food Composition and Analysis, 24 (2011) 270–278.
  • [18] Gaffney, M., O'Rourke, R., Murphy, R., Manipulation of fatty acid and antioxidant profiles of the microalgae Schizochytrium sp. through flaxseed oil supplementation, Algal Research, 6 (2014) 195–200.
  • [19] Çelenk, F. G., Investigation of antioxidant, cytotoxic, hypoglycemic and hypolipidemic effects of some macroalgae from the coasts of İzmir Gulf, PhD Thesis, Ege University, Graduate School of Natural and Applied Sciences, 2014.
  • [20] Puspita, M., Déniel, M., Widowati, I., Radjasa, O. K., Douzenel, P., Marty, C., Bourgougnon, N., Total phenolic content and biological activities of enzymatic extracts from Sargassum muticum (Yendo) Fensholt, Journal of Applied Phycology, 29 (2017) 2521–2537.
  • [21] Güner, A., Investigation of the protective effects and biological activities of hexane, chloroform and methanol extracts of brown algae (Halopteris scoparia Sauvageau), green (Enteromorpha linza J. Agardh) and red (Gracilaria gracilis M. Steentoft, L. M. Irvine & W. F. Farnham) collected from Izmir Gulf (Urla), PhD Thesis, Ege University, Graduate School of Natural and Applied Sciences, 2017.
  • [22] Peksezer, B., Alp, M. T., Ayas, D., Ulva intestinalis (Linnaeus 1753) ve Sargassum vulgare (F. Furcatum (Kützing) J. Agardh 1889) ekstraktlarının bazı patojen mikroorganizmalar üzerindeki antimikrobiyal etkileri, Mediterranean Fisheries and Aquaculture Research, 5(2) (2022) 54–64.
  • [23] Gür, İ., Polat, S., Seasonal changes in proximate and bioactive compounds of brown and red seaweeds from İskenderun Bay, the North-Eastern Mediterranean Sea, Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 6(1) (2023) 33–43.
  • [24] Santos, J. M., Jesus, B. C., Ribeiro, H., Martins, A., Marto, J., Fitas, M., Marrucho, I. M., Extraction of macroalgae phenolic compounds for cosmetic application using eutectic solvents, Algal Research, 79 (2024) 103438.
  • [25] Elnabris, K. J., Elmanama, A. A., Chihadeh, W. N., Antibacterial activity of four marine seaweeds collected from the coast of Gaza Strip, Palestine, Mesopotamian Journal of Marine Sciences, 28(1) (2013) 81–92.
  • [26] Park, J. S., Han, J. M., Shin, Y. N., Park, Y. S., Shin, Y. R., Park, S. W., Chun, B. S., Exploring bioactive compounds in brown seaweeds using subcritical water: A comprehensive analysis, Marine Drugs, 21(6) (2023) 328.
  • [27] Hashem, S. M., El-Lahot, A., Helal, A. M., Massoud, M. I., Evaluation of the phytochemicals and nutritional characteristics of some microalgae grown in Egypt as healthy food supplements, Egyptian Journal of Food Science, 49(1) (2021) 173–185.
  • [28] Diken, G., Determination using in vitro assay of inhibition values of different feed ingredients on the protease activities of meagre, Argyrosomus regius (Asso, 1801) larvae and production of species-specific microdiet, PhD Thesis, Süleyman Demirel University, Graduate School of Natural and Applied Sciences, 2018.
  • [29] Yenmiş, A. M., Naz, M., The determination of the leaching ratios of microdiets containing algae used as direct and indirect in aquaculture, Journal of Applied Animal Research, 46(1) (2018) 1496–1504.
  • [30] Øverland, M., Mydland, L. T., Skrede, A., Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals, Journal of the Science of Food and Agriculture, 99(1) (2019) 13–24.
  • [31] Naz, M., Sayın, S., Çetin, Z., Saygılı, E. İ., Taşkın, E., Söyler, O., The changes in biochemical compositions of five different macroalgae and seagrass (Halophila stipulacea (Forsskal) Ascherson 1867) collected from Iskenderun Bay, Journal of Advanced Research in Natural and Applied Sciences, 8(4) (2022) 796–804.
  • [32] Allen, K. M., Habte-Tsion, H. M., Thompson, K. R., Filer, K., Tidwell, J. H., Kumar, V., Freshwater microalgae (Schizochytrium sp.) as a substitute to fish oil for shrimp feed, Scientific Reports, 9(1) (2019) 6178.
  • [33] Chi, G., Xu, Y., Cao, X., Li, Z., Cao, M., Chisti, Y., He, N., Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp., Biotechnology Advances, 55 (2022) 107897.
  • [34] De Lima Valença, R., da Silva Sobrinho, A. G., Silva, L. G., Borghi, T. H., de Andrade, N., Soares, M., Meza, D. A. R., Bezerra, L. R., Performance, carcass traits, physicochemical properties and fatty acids composition of lamb's meat fed diets with marine microalgae meal (Schizochytrium sp.), Livestock Science, 243 (2021) 104387.
  • [35] Serrano Jr, A. E., Declarador, R. S., Tumbokon, B. L. M., Proximate composition and apparent digestibility coefficient of Sargassum spp. meal in the Nile tilapia, Oreochromis niloticus, Animal Biology & Animal Husbandry, 7(2) (2015) 159–168.
  • [36] Chakraborty, S., Bhattacharya, T., Nutrient composition of marine benthic algae found in the Gulf of Kutch coastline, Gujarat, India, Journal of Algal Biomass Utilization, 3(1) (2012) 32–38.
  • [37] Ahmad, F., Sulaiman, M. R., Saimon, W., Yee, C. F., Matanjun, P., Proximate compositions and total phenolic contents of selected edible seaweed from Semporna, Sabah, Malaysia, Borneo Science, 31 (2012) 85–96.
  • [38] Gressler, V., Yokoya, N. S., Fujii, M. T., Colepicolo, P., Mancini Filho, J., Torres, R. P., Pinto, E., Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species, Food Chemistry, 120(2) (2010) 585–590.
  • [39] Bernaerts, T. M., Gheysen, L., Kyomugasho, C., Kermani, Z. J., Vandionant, S., Foubert, I., Van Loey, A. M., Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides, Algal Research, 32 (2018) 150–161.
  • [40] El-Sayed, A. E. K. B., Reda, M. M., Almutairi, A. W., Mavromatis, C., Biomass production and biochemical composition of Chlorella vulgaris grown in Net-House Photobioreactor (NHPBR) using sugarcane press mud waste, Journal of Taibah University for Science, 17(1) (2023) 2194843.

Determination of Total Phenolic Amounts of Chloroform, Acetone and Methanol Extracts of Sargassum sp., Ulva sp. and Schizochytrium sp.

Year 2025, Volume: 46 Issue: 2, 292 - 297, 30.06.2025
https://doi.org/10.17776/csj.1629561

Abstract

The present study was aimed to determine the total phenolic amounts of the bioactive contents resulting from the extraction of Sargassum sp., Ulva sp. and Schizochytrium sp. with different solvents such as chloroform, acetone and methanol. Total phenolic content was determined using the Folin-Ciocalteu method. Samples (12.5%) were extracted with chloroform, acetone, and methanol, then filtered and the solvents were evaporated. Absorbance was measured at 760 nm. Total phenolic content was expressed as gallic acid equivalents (GAE). The total phenolic contents obtained from chloroform, acetone and methanol extracts of Sargassum sp., Ulva sp. and Schizochytrium sp. were determined as 136.40±1.93 mg GAE/g extract -3.61±0.18 mg GAE/g extract -7.83±0.03 mg GAE/g extract, 5.25±0.07 mg GAE/g extract -4.27±0.1 mg GAE/g extract -14.5±0.06 mg GAE/g extract and 15.7±0.27 mg GAE/g extract -2.6±0.04 mg GAE/g extract -14.84±0.11 mg GAE/g extract, respectively. Differences between total phenolic values were found to be statistically significant (p<0.05). The extraction yields obtained from chloroform, acetone and methanol extracts of Sargassum sp., Ulva sp. and Schizochytrium sp. were determined as 2.2±0.06%-4.35±0.07%-6.68±0.14%, 2.96±0.02%-4.33±0.09%-9.74±0.16% and 14.96±0.24%-10.03±0.004%-19.03±0.3%, respectively (p<0.05). Biochemical parameters such as dry matter, protein, ash and lipid of Sargassum sp., Ulva sp. and Schizochytrium sp. were found to be 94.05±0.01% -20.92±0.35% -26.55±1.77% -1.36±0.01%, 94.1±0.005%-17.04±0.04%-28.11±0.06% -2.66±0.05% and 95.1±0.05%- 23.01±0.07%- 9.59±0.787%- 25.5±0.21%. The soluble protein concentrations of Sargassum sp., Ulva sp. and Schizochytrium sp. in distilled water were determined as 66.45±0.5mg/g, 83.38±0.88 mg/g and 115.95±0.89 mg/g, respectively. In conclusion, chloroform and methanol extracts of Schizochytrium sp. had good extraction yield and phenolic content. On the other hand, the chloroform extract of Sargassum sp. had the highest phenolic content, while the extraction yield was at the lowest level. Acetone extracts of the 3 species tested exhibited low phenolic activity.

Ethical Statement

Since no human or animal subjects were used in this study, ethical approval was not required.

References

  • [1] Guiry M.D., AlgaeBase GGM, World-wide Electronic Publication, National University of Ireland, Galway, (2021).
  • [2] FAO, The State of World Fisheries and Aquaculture. Towards Blue Transformation, Rome: FAO, (2022).
  • [3] Cai, J., Lovatelli, A., Aguilar-Manjarrez, J., Cornish, L., Dabbadie, L., Desrochers, A., Diffey, S., Garrido Gamarro, E., Geehan, J., Hurtado, A., Lucente, D., Mair, G., Miao, W., Potin, P., Przybyla, C., Reantaso, M., Roubach, R., Tauati, M., Yuan, X., Seaweeds and microalgae: an overview for unlocking their potential in global aquaculture development, FAO Fisheries and Aquaculture Circular No. 1229, Rome: FAO, (2021).
  • [4] Yu, J. H., Wang, Y., Sun, J., Bian, F., Chen, G., Zhang, Y., Wu, Y. J., Antioxidant activity of alcohol aqueous extracts of Crypthecodinium cohnii and Schizochytrium sp., Journal of Zhejiang University. Science. B, 18(9) (2017) 797.
  • [5] La, A. L. T. Z., Pierce, K. M., Liu, W. H., Gao, S. T., Bu, D. P., Ma, L., Supplementation with Schizochytrium sp. enhances growth performance and antioxidant capability of dairy calves before weaning, Animal Feed Science and Technology, 271 (2021) 114779.
  • [6] Stengel, D. B., Connan, S., Popper, Z. A., Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application, Biotechnology Advances, 29(5) (2011) 483–501.
  • [7] Jégou, C., Connan, S., Bihannic, I., Cérantola, S., Guérard, F., Stiger-Pouvreau, V., Phlorotannin and pigment content of native canopy-forming Sargassaceae species living in intertidal rockpools in Brittany (France): any relationship with their vertical distribution and phenology?, Marine Drugs, 19(9) (2021) 504–524.
  • [8] Yılmaz, M., Türker, G., Ak, İ., The effect of different solvents on antioxidant properties of Gongolaria barbata (Phaeophyceae), Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 4(2) (2021) 197–201.
  • [9] Wang, B. G., Zhang, W. W., Duan, X. J., Li, X. M., In vitro antioxidative activities of extract and semipurified fractions of the marine red alga, Rhodomela confervoides (Rhodomelaceae), Food Chemistry, 113 (2009) 1101–1105.
  • [10] Andrade, L. M., Andrade, C. J., Dias, M., Nascimento, C., Mendes, M. A., Chlorella and spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements, Nutraceuticals and Food Supplements, 6(1) (2018) 45–58.
  • [11] Sadeghi, A., Rajabiyan, A., Nabizade, N., Meygolinezhad, N., Ahmady, A. Z., Seaweed-derived phenolic compounds as diverse bioactive molecules: A review on identification, application, extraction and purification strategies, International Journal of Biological Macromolecules, (2024) 131147.
  • [12] Singleton, V. L., Orthofer, R., Lamuela-Raventós, R. M., Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In: Methods in Enzymology, Academic Press, 299 (1999) 152–178.
  • [13] Bligh, E. G., Dyer, W. J., A rapid method of total lipid extraction and purification, Canadian Journal of Biochemistry and Physiology, 37(8) (1959) 911–917.
  • [14] AOAC, Animal Feed. In: Official Methods of Analysis, (1997), 30 pp.
  • [15] Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding, Analytical Biochemistry, 72 (1976) 248–254.
  • [16] El-Baky, H. H. A., El-Baz, F. K., El-Baroty, G. S., Natural preservative ingredient from marine alga Ulva lactuca L., International Journal of Food Science and Technology, 44(9) (2009) 1688–1695.
  • [17] Kumar, M., Gupta, V., Kumari, P., Reddy, C. R. K., Jha, B., Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds, Journal of Food Composition and Analysis, 24 (2011) 270–278.
  • [18] Gaffney, M., O'Rourke, R., Murphy, R., Manipulation of fatty acid and antioxidant profiles of the microalgae Schizochytrium sp. through flaxseed oil supplementation, Algal Research, 6 (2014) 195–200.
  • [19] Çelenk, F. G., Investigation of antioxidant, cytotoxic, hypoglycemic and hypolipidemic effects of some macroalgae from the coasts of İzmir Gulf, PhD Thesis, Ege University, Graduate School of Natural and Applied Sciences, 2014.
  • [20] Puspita, M., Déniel, M., Widowati, I., Radjasa, O. K., Douzenel, P., Marty, C., Bourgougnon, N., Total phenolic content and biological activities of enzymatic extracts from Sargassum muticum (Yendo) Fensholt, Journal of Applied Phycology, 29 (2017) 2521–2537.
  • [21] Güner, A., Investigation of the protective effects and biological activities of hexane, chloroform and methanol extracts of brown algae (Halopteris scoparia Sauvageau), green (Enteromorpha linza J. Agardh) and red (Gracilaria gracilis M. Steentoft, L. M. Irvine & W. F. Farnham) collected from Izmir Gulf (Urla), PhD Thesis, Ege University, Graduate School of Natural and Applied Sciences, 2017.
  • [22] Peksezer, B., Alp, M. T., Ayas, D., Ulva intestinalis (Linnaeus 1753) ve Sargassum vulgare (F. Furcatum (Kützing) J. Agardh 1889) ekstraktlarının bazı patojen mikroorganizmalar üzerindeki antimikrobiyal etkileri, Mediterranean Fisheries and Aquaculture Research, 5(2) (2022) 54–64.
  • [23] Gür, İ., Polat, S., Seasonal changes in proximate and bioactive compounds of brown and red seaweeds from İskenderun Bay, the North-Eastern Mediterranean Sea, Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 6(1) (2023) 33–43.
  • [24] Santos, J. M., Jesus, B. C., Ribeiro, H., Martins, A., Marto, J., Fitas, M., Marrucho, I. M., Extraction of macroalgae phenolic compounds for cosmetic application using eutectic solvents, Algal Research, 79 (2024) 103438.
  • [25] Elnabris, K. J., Elmanama, A. A., Chihadeh, W. N., Antibacterial activity of four marine seaweeds collected from the coast of Gaza Strip, Palestine, Mesopotamian Journal of Marine Sciences, 28(1) (2013) 81–92.
  • [26] Park, J. S., Han, J. M., Shin, Y. N., Park, Y. S., Shin, Y. R., Park, S. W., Chun, B. S., Exploring bioactive compounds in brown seaweeds using subcritical water: A comprehensive analysis, Marine Drugs, 21(6) (2023) 328.
  • [27] Hashem, S. M., El-Lahot, A., Helal, A. M., Massoud, M. I., Evaluation of the phytochemicals and nutritional characteristics of some microalgae grown in Egypt as healthy food supplements, Egyptian Journal of Food Science, 49(1) (2021) 173–185.
  • [28] Diken, G., Determination using in vitro assay of inhibition values of different feed ingredients on the protease activities of meagre, Argyrosomus regius (Asso, 1801) larvae and production of species-specific microdiet, PhD Thesis, Süleyman Demirel University, Graduate School of Natural and Applied Sciences, 2018.
  • [29] Yenmiş, A. M., Naz, M., The determination of the leaching ratios of microdiets containing algae used as direct and indirect in aquaculture, Journal of Applied Animal Research, 46(1) (2018) 1496–1504.
  • [30] Øverland, M., Mydland, L. T., Skrede, A., Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals, Journal of the Science of Food and Agriculture, 99(1) (2019) 13–24.
  • [31] Naz, M., Sayın, S., Çetin, Z., Saygılı, E. İ., Taşkın, E., Söyler, O., The changes in biochemical compositions of five different macroalgae and seagrass (Halophila stipulacea (Forsskal) Ascherson 1867) collected from Iskenderun Bay, Journal of Advanced Research in Natural and Applied Sciences, 8(4) (2022) 796–804.
  • [32] Allen, K. M., Habte-Tsion, H. M., Thompson, K. R., Filer, K., Tidwell, J. H., Kumar, V., Freshwater microalgae (Schizochytrium sp.) as a substitute to fish oil for shrimp feed, Scientific Reports, 9(1) (2019) 6178.
  • [33] Chi, G., Xu, Y., Cao, X., Li, Z., Cao, M., Chisti, Y., He, N., Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp., Biotechnology Advances, 55 (2022) 107897.
  • [34] De Lima Valença, R., da Silva Sobrinho, A. G., Silva, L. G., Borghi, T. H., de Andrade, N., Soares, M., Meza, D. A. R., Bezerra, L. R., Performance, carcass traits, physicochemical properties and fatty acids composition of lamb's meat fed diets with marine microalgae meal (Schizochytrium sp.), Livestock Science, 243 (2021) 104387.
  • [35] Serrano Jr, A. E., Declarador, R. S., Tumbokon, B. L. M., Proximate composition and apparent digestibility coefficient of Sargassum spp. meal in the Nile tilapia, Oreochromis niloticus, Animal Biology & Animal Husbandry, 7(2) (2015) 159–168.
  • [36] Chakraborty, S., Bhattacharya, T., Nutrient composition of marine benthic algae found in the Gulf of Kutch coastline, Gujarat, India, Journal of Algal Biomass Utilization, 3(1) (2012) 32–38.
  • [37] Ahmad, F., Sulaiman, M. R., Saimon, W., Yee, C. F., Matanjun, P., Proximate compositions and total phenolic contents of selected edible seaweed from Semporna, Sabah, Malaysia, Borneo Science, 31 (2012) 85–96.
  • [38] Gressler, V., Yokoya, N. S., Fujii, M. T., Colepicolo, P., Mancini Filho, J., Torres, R. P., Pinto, E., Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species, Food Chemistry, 120(2) (2010) 585–590.
  • [39] Bernaerts, T. M., Gheysen, L., Kyomugasho, C., Kermani, Z. J., Vandionant, S., Foubert, I., Van Loey, A. M., Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides, Algal Research, 32 (2018) 150–161.
  • [40] El-Sayed, A. E. K. B., Reda, M. M., Almutairi, A. W., Mavromatis, C., Biomass production and biochemical composition of Chlorella vulgaris grown in Net-House Photobioreactor (NHPBR) using sugarcane press mud waste, Journal of Taibah University for Science, 17(1) (2023) 2194843.
There are 40 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Natural Sciences
Authors

Mehmet Naz 0000-0002-5129-8498

Publication Date June 30, 2025
Submission Date January 30, 2025
Acceptance Date May 27, 2025
Published in Issue Year 2025Volume: 46 Issue: 2

Cite

APA Naz, M. (2025). Determination of Total Phenolic Amounts of Chloroform, Acetone and Methanol Extracts of Sargassum sp., Ulva sp. and Schizochytrium sp. Cumhuriyet Science Journal, 46(2), 292-297. https://doi.org/10.17776/csj.1629561