Research Article
BibTex RIS Cite

The Effect of The Geometry of Side Quantum Wells on The Optical Properties of Triple Quantum Wells Under The Electric Field Influence

Year 2025, Volume: 46 Issue: 1, 125 - 131, 25.03.2025
https://doi.org/10.17776/csj.1515106

Abstract

The electronic and optical properties of the symmetrical 〖Al〗_x 〖Ga〗_(1-x) As/GaAs multiple quantum wells were investigated. The system consists of three triangular-shaped quantum wells in which the potentials of left- and right-hand side wells were shallower in comparison with that of the center well. The calculations were carried out for different potential shapes as the triangular shapes of the left- and right-hand side wells varied from triangle to square shape keeping the center well potential constant. The energy levels were calculated using the finite difference method under the effective mass approximation, with and without an electric field. When the geometry of the side wells was changed from shallow triangular side wells to square side wells in the absence of an electric field, the optical transitions were found to shift towards smaller photon energies. When an electric field was applied, the optical absorption and refractive index changes for the (1-2) transition exhibited interesting behavior. It was found that the electronic and optical properties of structures can be controlled by the externally applied electric field by selecting appropriate structural parameters.

Ethical Statement

There is no ethical situation

Supporting Institution

Trakya University

Project Number

Bu makale Trakya Üniversitesi Bilimsel Araştırma Projesi (BAP) Merkezi tarafından 2024/117 nolu "Teşvik Projeleri" projesi kapsamında desteklenmiştir

Thanks

I would like to thank Trakya University Scientific Research Center (BAP) for their support.

References

  • [1]Umansky V., Heiblum, M., Levinson Y., Smet, J. Nübler J., Dolev M., MBE growth of ultra-low disorder 2DEG with mobility exceeding 35 X 10(6) cm(2)/V s, Journal of Crystal Growth. 311 (7) (2009) 1658-1661.
  • [2] Fu K., Growth Dynamics of Semiconductor Nanostructures by MOCVD, PD Thesis, School of Biotechnology (BIO), Theoretical Chemistry, (PhD dissertation, KTH), (2009), Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11447 (Retrieved May 2, 2024.)
  • [3] Hasegawa S., Sato M., Maehashi K., Asahi H., Nakashima, H., Formation of quantum well wire-like structures by MBE growth of AlGaAs/GaAs superlattices on GaAs (110) surfaces, Journal of crystal growth. 111 ( 1-4) (1991) 371-375.
  • [4]Hara S. Motohisa Ju., Fukui T., Hasegawa H., Quantum Well Wire Fabrication Method Using Self-Organized Multiatomic Steps on Vicinal (001) GaAs Surfaces by Metalorganic Vapor Phase Epitaxy, Japan Journal Applied Physics. 34 (1995) 4401-4404.
  • [5] Sato M., Maehashi K., Asahi H., Hasegawa S, Nakashima H., MBE growth of AlGaAs/GaAs superlattices on GaAs (110) substrates, Superlattices and Microstructures 7 (4) (1990) 279-282.
  • [6] Bozyigit, D., Wood, V., Challenges and solutions for high-efficiency quantum dot-based LEDs, MRS Bulletin. 38 (9) (2013) 731–736.
  • [7] Bozyigit D., Yarema O. Wood V., Origins of Low Quantum Efficiencies in Quantum Dot LEDs. Advanced Function Materials. 23 (24) (2013) 3024-3029.
  • [8] Wood V. , Bulović V., Colloidal quantum dot light-emitting devices, Nano Reviews. 1 (2010).
  • [9] Emin S., Singh S. P., Han L., Satoh N., Islam A., Colloidal quantum dot solar cells, Solar Energy. 85 (6) (2011) 1264-1282.
  • [10] Rühle S., Shalom M., Zaban A., Quantum-Dot-Sensitized Solar Cells, Chem. Phys. Chem. 11 (11) (2010): 2290-2304.
  • [11] Nozik A.J, Quantum dot solar cells, Physica E: Low-dimensional Systems and Nanostructures. 14 (1-2) (2002) 115-120.
  • [12] Gleiter H., Schimmel T., Hahn H., Nanostructured solids – From nano-glasses to quantum transistors. Nano Today. 9 (1) (2014) 17–68.
  • [13] Shi B., Pinna S., Luo W., Zhao H., Zhu S., Brunelli S. T. S., Lau K. M., Klamkin J., Comparison of static and dynamic characteristics of 1550 nm quantum dash and quantum well lasers, Optics Express. 28 (18) (2020) 26823-26835.
  • [14] Li S., Nezami M.S., Rolston D., Liboiron-Ladouceur O., A Compact High-Efficient Equivalent Circuit Model of Multi-Quantum-Well Vertical-Cavity Surface-Emitting Lasers for High-Speed Interconnects, Applied Sciences. 10 (11) (2020) 3865.
  • [15] Hakl M., Lin Q., Lepillet S., Billet M., Lampin J.-F., Pirotta S., Colombelli R., Wan W., Cao J. C., Li H., Peytavit E., Barbieri S., Ultrafast Quantum-Well Photodetectors Operating at 10 μm with a Flat Frequency Response up to 70 GHz at Room Temperature, ACS Photonics. 8 (2) (2021) 464-471.
  • [16] Tokhy M. E. S., Mahmoud I.I., Detectivity analysis of infrared photodetector devices under nonuniform distribution of quantum well and wire, Optik. 227 (2021) 166113.
  • [17] Miyazaki H.T., ManoT., Kasaya T. , Osato H., Watanabe K., Sugimoto Y., Kawazu T., Arai Y., Shigetou A., Ochiai T., Jimba Y. Miyazaki H., Synchronously wired infrared antennas for resonant single-quantum-well photodetection up to room temperature, Nature Communication. 11 (1) (2020) 565.
  • [18] Maximov M.V., Nadtochiy A.M., Mintairov S.A., Kalyuzhnyy, N.A., Kryzhanovskay N.V., Moiseev E.I., Gordeev N.Y., Shernyakov Y.M., Payusov A.S., Zubov F.I., Nevedomskiy V. N., Rouvimov S. S., Rouvimov S S. , Zhukov A. E., Light Emitting Devices Based on Quantum Well-Dots, Applied. Science. 10 (3) (2020) 1038.
  • [19] Grenier V., Finot S., Jacopin G., Bougerol C., Robin E., Mollard N., Gayral B., Monroy E., Eymery J., and Durand C., UV Emission from GaN Wires with m-Plane Core–Shell GaN/AlGaN Multiple Quantum Wells, ACS Applied Materials & Interfaces. 12 (39) (2020) 44007-44016.
  • [20]Kochetkov, F.M., Neplokh, V., Mastalieva, V.A., Mukhangali, S., Vorob’ev, A.A., Uvarov, A.V., Komissarenko F.E., Mitin, D.M., Kapoor, A., Eymery, J., Amador-Mendez N., Durand C. , Krasnikov D., , Nasibulin A. G., Tchernycheva M. Mukhin I. S., Stretchable Transparent Light-Emitting Diodes Based on InGaN/GaN Quantum Well Microwires and Carbon Nanotube Films, Nanomaterials. 11 (6) (2021) 1503.
  • [21] Krevchik V. D., Semenov M. B., Shorokhov A. V., Filatov D. O., Baidus N. V., Marychev M. O., Shkurinov A. P., Timoshenko V. Y., Krevchik P. V., Zhurina A. E., Saburova D. A., Antonov I. S., Semenov I. M., Effects of dissipative electron tunneling manifested in the photocurrent of a GaAs p-i-n photodiode with a double InAs quantum dot layer, Journal of Physics: Conference Series. 1851 (2021) 012016.
  • [22] Hsiao F.-C., Hazari A., Chang Y. C., Bhattacharya P., Dallesasse, J. M., Modeling photocurrent spectra of high-indium-content InGaN disk-in-wire photodiode on silicon substrate, Physica E: Low-dimensional Systems and Nanostructures. 144 (2022) 115371.
  • [23] Bayal M., Chandran N., Pilankatta R., Nair S.S., Quantum Wells, Wires and Dotes for Luminescent Device Applications. In: Nanomaterials for Luminescent Devices, Sensors, and Bio-imaging Applications. Progress in Optical Science and Photonics. (2021).
  • [24] Fischer I. A., Wendav T., Augel L., Jitpakdeebodin S., Oliveira F., Benedetti A., Stefanov S., Chiussi S., Capellini G., Busch K., Schulze J., Growth and characterization of SiGeSn quantum well photodiodes, Optic Expres . 23 (19) (2015) 25048-25057.
  • [25]Wegscheider W., Pfeiffer L., Kenneth W., Leibenguth R. E., Current injection GaAs/AlGaAs quantum wire lasers fabricated by cleaved edge overgrowth, Applied Physics Letters. 65 (20) (1994) 2510–2512.
  • [26] Bastard G., Mendez E. E., Chang L. L., Esaki L. Variational calculations on a quantum well in an electric field, Physical Review B. 28 (6) (1983) 3241–3245.
  • [27] Boz F.K., Aktas S., Bekar B., Okan S.E., Laser filed-driven potential profiles of double quantum wells, Physics Letters A. 376 (4) (2012) 590-594.
  • [28]Shaer A., Yücel M.B., Kasapoglu E., Hydrostatic pressure and temperature dependent optical properties of double inverse parabolic quantum well under the magnetic field, Physica B: Condensed Matter. 685 (15) (2024) 416057.
  • [29] Altun D., Ozturk O., Alaydin B.O., Ozturk E., Linear and nonlinear optical properties of a superlattice with periodically increased well width under electric and magnetic fields, Micro and Nanostructures. 166 (2022) 207225.
  • [30] Ungan F., Bahar M.K., Rodríguez-Magdaleno K.A., Mora-Ramos M.E., Martínez-Orozco J.C., Influence of applied external fields on the nonlinear optical properties of a semi-infinite asymmetric AlxGa1−xAs/GaAs quantum well, Materials Science in Semiconductor Processing. 123 (2021) 105509. ,,
  • [31] H. Sayrac, M. Jaouane, A. Ed-Dahmouny, A. Sali, F. Ungan, Modulation of nonlinear optical rectification, second, and third harmonic generation coefficients in n-type quadruple δ-doped GaAs quantum wells under external fields, Physica B: Condensed Matter. 690 (2024) 416252.
  • [32]Kasapoglu E., Yücel M. B., Duque C. A., Mora-Ramos M. E., Simultaneous effects of the position dependent mass and magnetic field on quantum well with the improved Tietz potential, Physica B: Condensed Matter. 679 (2024) 415797.
  • [33] Vinasco J. A., A. Radu, Niculescu E., Mora-Ramos M. E., Feddi E., Tulupenko V., Restrepo R. L., Kasapoglu E., Morales A. L., Duque C. A., Electronic states in GaAs-(Al,Ga)As eccentric quantum rings under nonresonant intense laser and magnetic fields, Scientific Reports. (9) (2019) 1427.
  • [34]Kes H., A Bilekkaya., Aktas S., Okan S.E., Binding energy of a hydrogenic impurity in a coaxial quantum wire with an insulator layer, Superlattices and Microstructures. 111 (2017) 966-975.
  • [35] Yesilgul U., Al E.B., Martínez-Orozco J.C., Restrepo R.L., Mora-Ramos M.E., Duque C.A., Ungan F., Kasapoglu E., Linear and nonlinear optical properties in an asymmetric double quantum well under intense laser field: Effects of applied electric and magnetic fields, Optical Materials. 58 (2016) 107-112.
  • [36]Al, E.B., Kasapoglu, E., Ungan, F. Dynamics of nonlinear optical rectification, second, and third harmonic generation in asymmetric triangular double quantum wells due to static electric and magnetic fields, The European Physical Journal Plus. 137 (2022).
  • [37] Al, E.B., Peter, A.J., Mora-Ramos, M. E. , Ungan F. Theoretical investigation of nonlinear optical properties of Mathieu quantum well, The European Physical Journal Plus. 138 (2023).
  • [38] Tuzemen, A.T., Dakhlaoui, H., Al, E.B., Ungan F., The nonlinear optical properties of "12-6" tuned GaAs/GaAlAs double quantum well under the external fields, The European Physical Journal Plus 138 (2) (2023).
  • [39]Tuzemen, A.T., Al, E.B., Dakhlaoui, H. , Ungan F., Effects of external electric and magnetic field on the nonlinear optical rectification, second, and third-harmonic generations in GaAs/AlGaAs asymmetric triple quantum well, The European Physical Journal Plus. 138 (7) (2023).
  • [40]Haghighatzadeh, A., Attarzadeh, A., Salman Durmuslar, A. Al E. B., Ungan F., Modeling of electronic spectra and optical responses of a semiconductor AlGaAs/GaAs quantum well with three-step barriers: the role of external perturbations and impurity, The European Physical Journal Plus 139 (4) (2024).
  • [41] Sayrac, M., Belhadj, W., Dakhlaoui, H. Ungan F., Influence of structural variables and external perturbations on the nonlinear optical rectification, second, and third-harmonic generation in the InP/InGaAs triple quantum well structure, The European Physical Journal Plus. 138 (2023).
  • [42]Alaydin B.O., Altun D., Ozturk O., Ozturk E., High harmonic generations triggered by the intense laser field in GaAs/AlxGa1-xAs honeycomb quantum well wires, Materials Today Physics. 38 (2023) 101232.
  • [43]Tirole R., Vezzoli S., Saxena D., Yang, S. Raziman T. V., Galiffi E., Maier S. A., Pendry J. B., Sapienza R., Second harmonic generation at a time-varying interface, Nature Communications. 15 (1) (2024).
  • [44]Cooper J. D., Valavanis A.,Ikonić Z.,Harrison P., Cunningham J. E., Finite difference method for solving the Schrödinger equation with band nonparabolicity in mid-infrared quantum cascade lasers, J. Appl. Phys. 108 (11) (2010) 113109.
  • [45] Yan R.Y., Tang J., Zhang Z.H., Yuan J. H., Optical properties in GaAs/AlGaAs semiparabolic quantum wells by the finite difference method: Combined effects of electric field and magnetic field, International Journal of Modern Physics B. 32 (13) (2018) 1850159.
  • [46]Ma X., Li K., Zhang Z.,; Hu H., Wang Q., Wei X., Song G., Two-band finite difference method for the bandstructure calculation with nonparabolicity effects in quantum cascade lasers, Journal of Applied Physics. 114 (6) (2013) 063101.
  • [47]Bekar B., Boz F.K., Aktas S., Okan S. E., The effect on the optical absorption coefficients due to the positions in the plane of square GaAs/Al(GaAs) quantum well wire under the laser field, Acta Physica Polonica A. 136 (6) (2019) 882-888.
Year 2025, Volume: 46 Issue: 1, 125 - 131, 25.03.2025
https://doi.org/10.17776/csj.1515106

Abstract

Ethical Statement

Her hangi bir etik durum durum söz konusu yoktur

Supporting Institution

Trakya Üniversitesi

Project Number

Bu makale Trakya Üniversitesi Bilimsel Araştırma Projesi (BAP) Merkezi tarafından 2024/117 nolu "Teşvik Projeleri" projesi kapsamında desteklenmiştir

Thanks

Desteklerinden dolayı Trakya Üniversitesi Bilimsel Araştırma Merkezi' (BAP)ne teşekkür ederim

References

  • [1]Umansky V., Heiblum, M., Levinson Y., Smet, J. Nübler J., Dolev M., MBE growth of ultra-low disorder 2DEG with mobility exceeding 35 X 10(6) cm(2)/V s, Journal of Crystal Growth. 311 (7) (2009) 1658-1661.
  • [2] Fu K., Growth Dynamics of Semiconductor Nanostructures by MOCVD, PD Thesis, School of Biotechnology (BIO), Theoretical Chemistry, (PhD dissertation, KTH), (2009), Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11447 (Retrieved May 2, 2024.)
  • [3] Hasegawa S., Sato M., Maehashi K., Asahi H., Nakashima, H., Formation of quantum well wire-like structures by MBE growth of AlGaAs/GaAs superlattices on GaAs (110) surfaces, Journal of crystal growth. 111 ( 1-4) (1991) 371-375.
  • [4]Hara S. Motohisa Ju., Fukui T., Hasegawa H., Quantum Well Wire Fabrication Method Using Self-Organized Multiatomic Steps on Vicinal (001) GaAs Surfaces by Metalorganic Vapor Phase Epitaxy, Japan Journal Applied Physics. 34 (1995) 4401-4404.
  • [5] Sato M., Maehashi K., Asahi H., Hasegawa S, Nakashima H., MBE growth of AlGaAs/GaAs superlattices on GaAs (110) substrates, Superlattices and Microstructures 7 (4) (1990) 279-282.
  • [6] Bozyigit, D., Wood, V., Challenges and solutions for high-efficiency quantum dot-based LEDs, MRS Bulletin. 38 (9) (2013) 731–736.
  • [7] Bozyigit D., Yarema O. Wood V., Origins of Low Quantum Efficiencies in Quantum Dot LEDs. Advanced Function Materials. 23 (24) (2013) 3024-3029.
  • [8] Wood V. , Bulović V., Colloidal quantum dot light-emitting devices, Nano Reviews. 1 (2010).
  • [9] Emin S., Singh S. P., Han L., Satoh N., Islam A., Colloidal quantum dot solar cells, Solar Energy. 85 (6) (2011) 1264-1282.
  • [10] Rühle S., Shalom M., Zaban A., Quantum-Dot-Sensitized Solar Cells, Chem. Phys. Chem. 11 (11) (2010): 2290-2304.
  • [11] Nozik A.J, Quantum dot solar cells, Physica E: Low-dimensional Systems and Nanostructures. 14 (1-2) (2002) 115-120.
  • [12] Gleiter H., Schimmel T., Hahn H., Nanostructured solids – From nano-glasses to quantum transistors. Nano Today. 9 (1) (2014) 17–68.
  • [13] Shi B., Pinna S., Luo W., Zhao H., Zhu S., Brunelli S. T. S., Lau K. M., Klamkin J., Comparison of static and dynamic characteristics of 1550 nm quantum dash and quantum well lasers, Optics Express. 28 (18) (2020) 26823-26835.
  • [14] Li S., Nezami M.S., Rolston D., Liboiron-Ladouceur O., A Compact High-Efficient Equivalent Circuit Model of Multi-Quantum-Well Vertical-Cavity Surface-Emitting Lasers for High-Speed Interconnects, Applied Sciences. 10 (11) (2020) 3865.
  • [15] Hakl M., Lin Q., Lepillet S., Billet M., Lampin J.-F., Pirotta S., Colombelli R., Wan W., Cao J. C., Li H., Peytavit E., Barbieri S., Ultrafast Quantum-Well Photodetectors Operating at 10 μm with a Flat Frequency Response up to 70 GHz at Room Temperature, ACS Photonics. 8 (2) (2021) 464-471.
  • [16] Tokhy M. E. S., Mahmoud I.I., Detectivity analysis of infrared photodetector devices under nonuniform distribution of quantum well and wire, Optik. 227 (2021) 166113.
  • [17] Miyazaki H.T., ManoT., Kasaya T. , Osato H., Watanabe K., Sugimoto Y., Kawazu T., Arai Y., Shigetou A., Ochiai T., Jimba Y. Miyazaki H., Synchronously wired infrared antennas for resonant single-quantum-well photodetection up to room temperature, Nature Communication. 11 (1) (2020) 565.
  • [18] Maximov M.V., Nadtochiy A.M., Mintairov S.A., Kalyuzhnyy, N.A., Kryzhanovskay N.V., Moiseev E.I., Gordeev N.Y., Shernyakov Y.M., Payusov A.S., Zubov F.I., Nevedomskiy V. N., Rouvimov S. S., Rouvimov S S. , Zhukov A. E., Light Emitting Devices Based on Quantum Well-Dots, Applied. Science. 10 (3) (2020) 1038.
  • [19] Grenier V., Finot S., Jacopin G., Bougerol C., Robin E., Mollard N., Gayral B., Monroy E., Eymery J., and Durand C., UV Emission from GaN Wires with m-Plane Core–Shell GaN/AlGaN Multiple Quantum Wells, ACS Applied Materials & Interfaces. 12 (39) (2020) 44007-44016.
  • [20]Kochetkov, F.M., Neplokh, V., Mastalieva, V.A., Mukhangali, S., Vorob’ev, A.A., Uvarov, A.V., Komissarenko F.E., Mitin, D.M., Kapoor, A., Eymery, J., Amador-Mendez N., Durand C. , Krasnikov D., , Nasibulin A. G., Tchernycheva M. Mukhin I. S., Stretchable Transparent Light-Emitting Diodes Based on InGaN/GaN Quantum Well Microwires and Carbon Nanotube Films, Nanomaterials. 11 (6) (2021) 1503.
  • [21] Krevchik V. D., Semenov M. B., Shorokhov A. V., Filatov D. O., Baidus N. V., Marychev M. O., Shkurinov A. P., Timoshenko V. Y., Krevchik P. V., Zhurina A. E., Saburova D. A., Antonov I. S., Semenov I. M., Effects of dissipative electron tunneling manifested in the photocurrent of a GaAs p-i-n photodiode with a double InAs quantum dot layer, Journal of Physics: Conference Series. 1851 (2021) 012016.
  • [22] Hsiao F.-C., Hazari A., Chang Y. C., Bhattacharya P., Dallesasse, J. M., Modeling photocurrent spectra of high-indium-content InGaN disk-in-wire photodiode on silicon substrate, Physica E: Low-dimensional Systems and Nanostructures. 144 (2022) 115371.
  • [23] Bayal M., Chandran N., Pilankatta R., Nair S.S., Quantum Wells, Wires and Dotes for Luminescent Device Applications. In: Nanomaterials for Luminescent Devices, Sensors, and Bio-imaging Applications. Progress in Optical Science and Photonics. (2021).
  • [24] Fischer I. A., Wendav T., Augel L., Jitpakdeebodin S., Oliveira F., Benedetti A., Stefanov S., Chiussi S., Capellini G., Busch K., Schulze J., Growth and characterization of SiGeSn quantum well photodiodes, Optic Expres . 23 (19) (2015) 25048-25057.
  • [25]Wegscheider W., Pfeiffer L., Kenneth W., Leibenguth R. E., Current injection GaAs/AlGaAs quantum wire lasers fabricated by cleaved edge overgrowth, Applied Physics Letters. 65 (20) (1994) 2510–2512.
  • [26] Bastard G., Mendez E. E., Chang L. L., Esaki L. Variational calculations on a quantum well in an electric field, Physical Review B. 28 (6) (1983) 3241–3245.
  • [27] Boz F.K., Aktas S., Bekar B., Okan S.E., Laser filed-driven potential profiles of double quantum wells, Physics Letters A. 376 (4) (2012) 590-594.
  • [28]Shaer A., Yücel M.B., Kasapoglu E., Hydrostatic pressure and temperature dependent optical properties of double inverse parabolic quantum well under the magnetic field, Physica B: Condensed Matter. 685 (15) (2024) 416057.
  • [29] Altun D., Ozturk O., Alaydin B.O., Ozturk E., Linear and nonlinear optical properties of a superlattice with periodically increased well width under electric and magnetic fields, Micro and Nanostructures. 166 (2022) 207225.
  • [30] Ungan F., Bahar M.K., Rodríguez-Magdaleno K.A., Mora-Ramos M.E., Martínez-Orozco J.C., Influence of applied external fields on the nonlinear optical properties of a semi-infinite asymmetric AlxGa1−xAs/GaAs quantum well, Materials Science in Semiconductor Processing. 123 (2021) 105509. ,,
  • [31] H. Sayrac, M. Jaouane, A. Ed-Dahmouny, A. Sali, F. Ungan, Modulation of nonlinear optical rectification, second, and third harmonic generation coefficients in n-type quadruple δ-doped GaAs quantum wells under external fields, Physica B: Condensed Matter. 690 (2024) 416252.
  • [32]Kasapoglu E., Yücel M. B., Duque C. A., Mora-Ramos M. E., Simultaneous effects of the position dependent mass and magnetic field on quantum well with the improved Tietz potential, Physica B: Condensed Matter. 679 (2024) 415797.
  • [33] Vinasco J. A., A. Radu, Niculescu E., Mora-Ramos M. E., Feddi E., Tulupenko V., Restrepo R. L., Kasapoglu E., Morales A. L., Duque C. A., Electronic states in GaAs-(Al,Ga)As eccentric quantum rings under nonresonant intense laser and magnetic fields, Scientific Reports. (9) (2019) 1427.
  • [34]Kes H., A Bilekkaya., Aktas S., Okan S.E., Binding energy of a hydrogenic impurity in a coaxial quantum wire with an insulator layer, Superlattices and Microstructures. 111 (2017) 966-975.
  • [35] Yesilgul U., Al E.B., Martínez-Orozco J.C., Restrepo R.L., Mora-Ramos M.E., Duque C.A., Ungan F., Kasapoglu E., Linear and nonlinear optical properties in an asymmetric double quantum well under intense laser field: Effects of applied electric and magnetic fields, Optical Materials. 58 (2016) 107-112.
  • [36]Al, E.B., Kasapoglu, E., Ungan, F. Dynamics of nonlinear optical rectification, second, and third harmonic generation in asymmetric triangular double quantum wells due to static electric and magnetic fields, The European Physical Journal Plus. 137 (2022).
  • [37] Al, E.B., Peter, A.J., Mora-Ramos, M. E. , Ungan F. Theoretical investigation of nonlinear optical properties of Mathieu quantum well, The European Physical Journal Plus. 138 (2023).
  • [38] Tuzemen, A.T., Dakhlaoui, H., Al, E.B., Ungan F., The nonlinear optical properties of "12-6" tuned GaAs/GaAlAs double quantum well under the external fields, The European Physical Journal Plus 138 (2) (2023).
  • [39]Tuzemen, A.T., Al, E.B., Dakhlaoui, H. , Ungan F., Effects of external electric and magnetic field on the nonlinear optical rectification, second, and third-harmonic generations in GaAs/AlGaAs asymmetric triple quantum well, The European Physical Journal Plus. 138 (7) (2023).
  • [40]Haghighatzadeh, A., Attarzadeh, A., Salman Durmuslar, A. Al E. B., Ungan F., Modeling of electronic spectra and optical responses of a semiconductor AlGaAs/GaAs quantum well with three-step barriers: the role of external perturbations and impurity, The European Physical Journal Plus 139 (4) (2024).
  • [41] Sayrac, M., Belhadj, W., Dakhlaoui, H. Ungan F., Influence of structural variables and external perturbations on the nonlinear optical rectification, second, and third-harmonic generation in the InP/InGaAs triple quantum well structure, The European Physical Journal Plus. 138 (2023).
  • [42]Alaydin B.O., Altun D., Ozturk O., Ozturk E., High harmonic generations triggered by the intense laser field in GaAs/AlxGa1-xAs honeycomb quantum well wires, Materials Today Physics. 38 (2023) 101232.
  • [43]Tirole R., Vezzoli S., Saxena D., Yang, S. Raziman T. V., Galiffi E., Maier S. A., Pendry J. B., Sapienza R., Second harmonic generation at a time-varying interface, Nature Communications. 15 (1) (2024).
  • [44]Cooper J. D., Valavanis A.,Ikonić Z.,Harrison P., Cunningham J. E., Finite difference method for solving the Schrödinger equation with band nonparabolicity in mid-infrared quantum cascade lasers, J. Appl. Phys. 108 (11) (2010) 113109.
  • [45] Yan R.Y., Tang J., Zhang Z.H., Yuan J. H., Optical properties in GaAs/AlGaAs semiparabolic quantum wells by the finite difference method: Combined effects of electric field and magnetic field, International Journal of Modern Physics B. 32 (13) (2018) 1850159.
  • [46]Ma X., Li K., Zhang Z.,; Hu H., Wang Q., Wei X., Song G., Two-band finite difference method for the bandstructure calculation with nonparabolicity effects in quantum cascade lasers, Journal of Applied Physics. 114 (6) (2013) 063101.
  • [47]Bekar B., Boz F.K., Aktas S., Okan S. E., The effect on the optical absorption coefficients due to the positions in the plane of square GaAs/Al(GaAs) quantum well wire under the laser field, Acta Physica Polonica A. 136 (6) (2019) 882-888.
There are 47 citations in total.

Details

Primary Language English
Subjects Quantum Optics and Quantum Optomechanics
Journal Section Natural Sciences
Authors

Bahadır Bekar 0000-0002-7489-2190

Project Number Bu makale Trakya Üniversitesi Bilimsel Araştırma Projesi (BAP) Merkezi tarafından 2024/117 nolu "Teşvik Projeleri" projesi kapsamında desteklenmiştir
Publication Date March 25, 2025
Submission Date July 12, 2024
Acceptance Date December 30, 2024
Published in Issue Year 2025Volume: 46 Issue: 1

Cite

APA Bekar, B. (2025). The Effect of The Geometry of Side Quantum Wells on The Optical Properties of Triple Quantum Wells Under The Electric Field Influence. Cumhuriyet Science Journal, 46(1), 125-131. https://doi.org/10.17776/csj.1515106