Research Article
BibTex RIS Cite
Year 2024, Volume: 45 Issue: 2, 240 - 248, 30.06.2024
https://doi.org/10.17776/csj.1457268

Abstract

References

  • [1] Boukarma L, Aboussabek A, El Aroussi F, Zerbet M, Sinan F, Chiban M., Insight into mechanism, Box-Behnken design, and artificial neural network of cationic dye biosorption by marine macroalgae Fucus spiralis, Algal. Res., 76 ( 2023) 103324.
  • [2] Akindolie M.S, Choi H.J., Acid modification of lignocellulosic derived material for dye and heavy metals removal: A review, Environ Eng Res., 28 ( 2023) 0–3. Gajipara Y.N, Balpande D.N., Patil P.S., Yadav A.A., Yadav M.D., Patwardhan A.V., Jackfruit Leaf–Based Natural Adsorbent for the Efficient Removal of Auramine O Dye, Water Conserv. Sci. Eng., 8 (2023) 1–13.
  • [3] Mahajan P, Jaspal D, Malviya A., Adsorption of dyes using custard apple and wood apple waste: A review, J. Indian Chem. Soc., 100 (2023) 100948.
  • [4] Sánchez-Ponce L., Díaz-de-Alba M., Casanueva-Marenco M.J., Gestoso-Rojas J., Ortega-Iguña M., Galindo-Riaño M.D., et al, Potential Use of Low-Cost Agri-Food Waste as Biosorbents for the Removal of Cd(II), Co(II), Ni(II) and Pb(II) from Aqueous Solutions, Separations, 9(10) (2022) 309.
  • [5] Hambisa A.A., Regasa M.B., Ejigu H.G., Senbeto C.B., Adsorption studies of methyl orange dye removal from aqueous solution using Anchote peel-based agricultural waste adsorbent, Appl. Water Sci., 13( 24) ( 2023) 1–11.
  • [6] Kainth S., Sharma P., Panney O.P., Green sorbents from agricultural wastes: A review of sustainable adsorption materials, Applied Surface Science Advances, 19 (2024) 100562.
  • [7] Hadadi A., Imessaoudene A., Bollinger J.C., Cheikh S., Manseri A., Mouni L., Dual Valorization of Potato Peel (Solanum tuberosum) as a Versatile and Sustainable Agricultural Waste in Both Bioflocculation of Eriochrome Black T and Biosorption of Methylene Blue., J. Polym Environ., 31 (2023) 2983–98.
  • [8] Kumari S., Verma A., Sharma P., Agarwal S., Rajput V.D., Minkina T., et al., Introducing machine learning model to response surface methodology for biosorption of methylene blue dye using Triticum aestivum biomass, Sci. Rep., 13 ( 2023) 8574.
  • [9] Handayani T., Emriadi, Deswati, Ramadhani P., Zein R., Modelling studies of methylene blue dye removal using activated corn husk waste: Isotherm, kinetic and thermodynamic evaluation, South African J. Chem. Eng., 47 ( 2024) 15–27.
  • [10] Naboulsi A., Naboulsi I., Regti A., El Himri M., El Haddad M., The valorization of rosemary waste as a new biosorbent to eliminate the rhodamine B dye, Microchem. J., 191 (2023) 108790.
  • [11] Ouettar L., Guechi E.K., Hamdaoui O., Fertikh N., Saoudi F., Alghyamah A., Biosorption of Triphenyl Methane Dyes (Malachite Green and Crystal Violet) from Aqueous Media by Alfa (Stipa tenacissima L.) Leaf Powder, Molecules, 28(8) (2023) 3313.
  • [12] Zhang Y., Huang X., Zeng X., Li L., Jiang Y., Preparation, functional properties, and nutritional evaluation of chickpea protein concentrate, Cereal Chem., 100 (2023) 310–20.
  • [13] Keskin Z.S., Efficient adsorption of Pb(II) ions using novel adsorbent polyacrylamide/coffee ground composite: isotherm, kinetic and thermodynamic studies, Polym. Bull., (2023). https://doi.org/10.1007/s00289-023-05111-x
  • [14] Isik B., Avci S., Cakar F., Cankurtaran O., Adsorptive removal of hazardous dye (crystal violet) using bay leaves (Laurus nobilis L.): surface characterization, batch adsorption studies, and statistical analysis, Environ Sci. Pollut. Res., 30 ( 2023) 1333–56.
  • [15] Choong Lek B.L., Peter A.P., Qi Chong K.H., Ragu P., Sethu V., Selvarajoo A., et al., Treatment of palm oil mill effluent (POME) using chickpea (Cicer arietinum) as a natural coagulant and flocculant: Evaluation, process optimization and characterization of chickpea powder, J. Environ. Chem. Eng., 6 (2018) 6243–55.
  • [16] Petrović M., Šoštarić T., Stojanović M., Milojković J., Mihajlović M., Stanojević M., et al., Removal of Pb2+ ions by raw corn silk (Zea mays L.) as a novel biosorbent, J. Taiwan Inst. Chem. Eng., 58 (2016) 407–16.
  • [17] Fatombi J.K., Lartiges B., Aminou T., Barres O., Caillet C., A natural coagulant protein from copra (Cocos nucifera): Isolation, characterization, and potential for water purification, Sep Purif Technol., 116 (2013) 35–40.
  • [18] Garg U., Kaur M.P., Jawa G.K., Sud D., Garg V.K., Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass, J. Hazard Mater., 154 (2008) 1149–57.
  • [19] Mansour R.A., El Shahawy A., Attia A., Beheary M.S., Brilliant Green Dye Biosorption Using Activated Carbon Derived from Guava Tree Wood, Int. J. Chem. Eng., 2020 (2020) 8053828.
  • [20] Şenol Z.M., Keskin Z.S., Şimşek S., Synthesis and characterization of a new hybrid polymer composite (pollene@polyacrylamide) and its applicability in uranyl ions adsorption, J. Radioanal Nucl. Chem., 332 (2023) 2239–2248.
  • [21] Hevira L, Zilfa, Rahmayeni, Ighalo J.O., Zein R., Biosorption of indigo carmine from aqueous solution by Terminalia Catappa shell, J. Environ. Chem. Eng., 8 ( 2020)104290.
  • [22] Akkari I., Graba Z., Bezzi N., Merzeg F.A., Bait N., Ferhati A., Raw pomegranate peel as promise efficient biosorbent for the removal of Basic Red 46 dye: equilibrium, kinetic, and thermodynamic studies, Biomass Convers Biorefinery, 13 ( 2023) 8047–60.
  • [23] Amar I.A., Biosorption Removal of Methylene Blue Dye from Aqueous Solutions using Phosphoric Acid-Treated Balanites Aegyptiaca Seed Husks Powder, Biointerface Research in Applied Chemistry, 12(6) (2022) 7845–62.
  • [24] Al-Asadi S.T., Al-Qaim F.F., Al-Saedi H.F.S., Deyab I.F., Kamyab H., Chelliapan S., Adsorption of methylene blue dye from aqueous solution using low-cost adsorbent: kinetic, isotherm adsorption, and thermodynamic studies, Environ Monit Assess, 195 (2023) 676.
  • [25] Ayawei N., Ebelegi A.N., Wankasi D., Modelling and Interpretation of Adsorption Isotherms, J Chem., 2017 (2017) 3039817.
  • [26] Şenol Z.M., Gül Ü.D., Şimşek S., Bioremoval of Safranin O dye by the identified lichen species called Evernia prunastri biomass; biosorption optimization, isotherms, kinetics, and thermodynamics, Biomass Convers Biorefinery., 12 (2022) 4127–37.
  • [27] Mohammed R.A., Walli H.A., A Study of Removal of Lead (II) Ions from Aqueous Solution on Chitosan-g-poly (acrylic acid-co-crotonic acid) Hydrogel, Int J Drug Deliv Technol., 12 (2022) 1844–8.
  • [28] Keskin Z.S., Şenol Z.M., Kaya S., Şimşek S., Prunus mahaleb shell as a sustainable bioresource for carminic acid removal from aqueous solution: Experimental and theoretical studies, J. Mol. Struct., 1275 (2023) 134618.
  • [29] Al-Ghouti M.A., Da’ana D.A., Guidelines for the use and interpretation of adsorption isotherm models: A review, J. Hazard Mater., 393 (2020) 122383.
  • [30] Dada A.O., Adekola F.A., Odebunmi E.O., Dada F.E., Bello O.M., Akinyemi B.A., et al., Sustainable and low-cost Ocimum gratissimum for biosorption of indigo carmine dye: kinetics, isotherm, and thermodynamic studies, Int. J. Phytoremediation,. 22 (2020) 1524–37.
  • [31] Şenol Z.M., Çetinkaya S., Yenidünya A.F., Başoğlu-Ünal F., Ece A., Epichlorohydrin and tripolyphosphate-crosslinked chitosan–kaolin composite for Auramine O dye removal from aqueous solutions: Experimental study and DFT calculations, Int. J. Biol. Macromol., 199 (2022) 318–30.
  • [32] Sözüdoğru O., Investigation of Effective Removal of Auramine O Dye by Pyracantha Coccinea Biosorbent: Isotherm and Kinetics, Brill Eng.,4 (2023) 1–6.
  • [33] Vaid V., Jindal R., Biodegradable tamarind kernel powder/kappa-carrageenan hydrogel for efficient removal of cationic dyes from effluents, Water Environ. Res., 95 (2023) 1–21.
  • [34] Shakeri S., Rafiee Z., Dashtian K., Fe3O4-Based Melamine-Rich Covalent Organic Polymer for Simultaneous Removal of Auramine O and Rhodamine B., J. Chem. Eng. Data, 65 (2020) 696–705.
  • [35] Duarte E.D.V., Vieira W.T., Góes R.O., de Azevedo L.E.C., Vieira M.G.A., da Silva M.G.C., et al., Amazon raw clay as a precursor of a clay-based adsorbent: experimental study and DFT analysis for the adsorption of Basic Yellow 2 dye, Environ. Sci. Pollut. Res., 30 (2023) 62602–24. A
  • [36] Şenol Z.M., Şimşek S, Equilibrium, kinetics and thermodynamics of Pb(II) ions from aqueous solution by adsorption onto chitosan-dolomite composite beads, Int. J. Environ. Anal. Chem., 102(17) (2022) 4926–40.
  • [37] Thompson C.O., Ndukwe A.O., Asadu C.O., Application of activated biomass waste as an adsorbent for the removal of lead (II) ion from wastewater, Emerg Contam., 6 (2020) 259–67.
  • [38] Şenol Z.M, El Messaoudi N., Fernine Y., Keskin Z.S., Bioremoval of rhodamine B dye from aqueous solution by using agricultural solid waste ( almond shell ): experimental and DFT modeling studies, Biomass Convers Biorefinery, (2023) https://doi.org/10.1007/s13399-023-03781-1.
  • [39] Zafar L., Khan A., Kamran U., Park S., Nawaz H., Eucalyptus ( camaldulensis ) bark-based composites for efficient Basic Blue 41 dye biosorption from aqueous stream : Kinetics , isothermal , and thermodynamic studies, Surfaces and Interfaces , 31 (2022) 101897.

Effective Biosorption of Auramin O Dye with Sustainable Chickpea Pods Waste; Isotherms, Kinetics and Thermodynamic Analysis

Year 2024, Volume: 45 Issue: 2, 240 - 248, 30.06.2024
https://doi.org/10.17776/csj.1457268

Abstract

This study investigated biosorbent properties in removing Auramin O (AO) dye from the aqueous solution of agricultural wastes released from chickpea (Cicer arietinum L.), which is widely produced in Turkey and the world. Biosorption studies were carried out using different values of parameters such as initial AO concentration, dye pH, contact time, temperature, and biosorbent amount. Characterization analyses of the biosorbent used before and after biosorption were carried out by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Brunauer–Emmett–Teller (BET), Fourier transform infrared spectroscopy (FTIR), and point of zero charge (PZC). Biosorption isotherms were evaluated using Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models. As a result of experimental data, it has been shown that the Langmuir isotherm model (R2 = 0.930) is the most compatible model for biosorption, while the biosorption kinetic mechanism proceeds through the pseudo-second-order (PSO) kinetic model (R2 = 0.965) and the intra-particle diffusion model. As a result of thermodynamic studies, it has been reported that biosorption is endothermic (ΔH0>0), spontaneous (ΔS0>0), and entropy-increasing (ΔG0 <0).

References

  • [1] Boukarma L, Aboussabek A, El Aroussi F, Zerbet M, Sinan F, Chiban M., Insight into mechanism, Box-Behnken design, and artificial neural network of cationic dye biosorption by marine macroalgae Fucus spiralis, Algal. Res., 76 ( 2023) 103324.
  • [2] Akindolie M.S, Choi H.J., Acid modification of lignocellulosic derived material for dye and heavy metals removal: A review, Environ Eng Res., 28 ( 2023) 0–3. Gajipara Y.N, Balpande D.N., Patil P.S., Yadav A.A., Yadav M.D., Patwardhan A.V., Jackfruit Leaf–Based Natural Adsorbent for the Efficient Removal of Auramine O Dye, Water Conserv. Sci. Eng., 8 (2023) 1–13.
  • [3] Mahajan P, Jaspal D, Malviya A., Adsorption of dyes using custard apple and wood apple waste: A review, J. Indian Chem. Soc., 100 (2023) 100948.
  • [4] Sánchez-Ponce L., Díaz-de-Alba M., Casanueva-Marenco M.J., Gestoso-Rojas J., Ortega-Iguña M., Galindo-Riaño M.D., et al, Potential Use of Low-Cost Agri-Food Waste as Biosorbents for the Removal of Cd(II), Co(II), Ni(II) and Pb(II) from Aqueous Solutions, Separations, 9(10) (2022) 309.
  • [5] Hambisa A.A., Regasa M.B., Ejigu H.G., Senbeto C.B., Adsorption studies of methyl orange dye removal from aqueous solution using Anchote peel-based agricultural waste adsorbent, Appl. Water Sci., 13( 24) ( 2023) 1–11.
  • [6] Kainth S., Sharma P., Panney O.P., Green sorbents from agricultural wastes: A review of sustainable adsorption materials, Applied Surface Science Advances, 19 (2024) 100562.
  • [7] Hadadi A., Imessaoudene A., Bollinger J.C., Cheikh S., Manseri A., Mouni L., Dual Valorization of Potato Peel (Solanum tuberosum) as a Versatile and Sustainable Agricultural Waste in Both Bioflocculation of Eriochrome Black T and Biosorption of Methylene Blue., J. Polym Environ., 31 (2023) 2983–98.
  • [8] Kumari S., Verma A., Sharma P., Agarwal S., Rajput V.D., Minkina T., et al., Introducing machine learning model to response surface methodology for biosorption of methylene blue dye using Triticum aestivum biomass, Sci. Rep., 13 ( 2023) 8574.
  • [9] Handayani T., Emriadi, Deswati, Ramadhani P., Zein R., Modelling studies of methylene blue dye removal using activated corn husk waste: Isotherm, kinetic and thermodynamic evaluation, South African J. Chem. Eng., 47 ( 2024) 15–27.
  • [10] Naboulsi A., Naboulsi I., Regti A., El Himri M., El Haddad M., The valorization of rosemary waste as a new biosorbent to eliminate the rhodamine B dye, Microchem. J., 191 (2023) 108790.
  • [11] Ouettar L., Guechi E.K., Hamdaoui O., Fertikh N., Saoudi F., Alghyamah A., Biosorption of Triphenyl Methane Dyes (Malachite Green and Crystal Violet) from Aqueous Media by Alfa (Stipa tenacissima L.) Leaf Powder, Molecules, 28(8) (2023) 3313.
  • [12] Zhang Y., Huang X., Zeng X., Li L., Jiang Y., Preparation, functional properties, and nutritional evaluation of chickpea protein concentrate, Cereal Chem., 100 (2023) 310–20.
  • [13] Keskin Z.S., Efficient adsorption of Pb(II) ions using novel adsorbent polyacrylamide/coffee ground composite: isotherm, kinetic and thermodynamic studies, Polym. Bull., (2023). https://doi.org/10.1007/s00289-023-05111-x
  • [14] Isik B., Avci S., Cakar F., Cankurtaran O., Adsorptive removal of hazardous dye (crystal violet) using bay leaves (Laurus nobilis L.): surface characterization, batch adsorption studies, and statistical analysis, Environ Sci. Pollut. Res., 30 ( 2023) 1333–56.
  • [15] Choong Lek B.L., Peter A.P., Qi Chong K.H., Ragu P., Sethu V., Selvarajoo A., et al., Treatment of palm oil mill effluent (POME) using chickpea (Cicer arietinum) as a natural coagulant and flocculant: Evaluation, process optimization and characterization of chickpea powder, J. Environ. Chem. Eng., 6 (2018) 6243–55.
  • [16] Petrović M., Šoštarić T., Stojanović M., Milojković J., Mihajlović M., Stanojević M., et al., Removal of Pb2+ ions by raw corn silk (Zea mays L.) as a novel biosorbent, J. Taiwan Inst. Chem. Eng., 58 (2016) 407–16.
  • [17] Fatombi J.K., Lartiges B., Aminou T., Barres O., Caillet C., A natural coagulant protein from copra (Cocos nucifera): Isolation, characterization, and potential for water purification, Sep Purif Technol., 116 (2013) 35–40.
  • [18] Garg U., Kaur M.P., Jawa G.K., Sud D., Garg V.K., Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass, J. Hazard Mater., 154 (2008) 1149–57.
  • [19] Mansour R.A., El Shahawy A., Attia A., Beheary M.S., Brilliant Green Dye Biosorption Using Activated Carbon Derived from Guava Tree Wood, Int. J. Chem. Eng., 2020 (2020) 8053828.
  • [20] Şenol Z.M., Keskin Z.S., Şimşek S., Synthesis and characterization of a new hybrid polymer composite (pollene@polyacrylamide) and its applicability in uranyl ions adsorption, J. Radioanal Nucl. Chem., 332 (2023) 2239–2248.
  • [21] Hevira L, Zilfa, Rahmayeni, Ighalo J.O., Zein R., Biosorption of indigo carmine from aqueous solution by Terminalia Catappa shell, J. Environ. Chem. Eng., 8 ( 2020)104290.
  • [22] Akkari I., Graba Z., Bezzi N., Merzeg F.A., Bait N., Ferhati A., Raw pomegranate peel as promise efficient biosorbent for the removal of Basic Red 46 dye: equilibrium, kinetic, and thermodynamic studies, Biomass Convers Biorefinery, 13 ( 2023) 8047–60.
  • [23] Amar I.A., Biosorption Removal of Methylene Blue Dye from Aqueous Solutions using Phosphoric Acid-Treated Balanites Aegyptiaca Seed Husks Powder, Biointerface Research in Applied Chemistry, 12(6) (2022) 7845–62.
  • [24] Al-Asadi S.T., Al-Qaim F.F., Al-Saedi H.F.S., Deyab I.F., Kamyab H., Chelliapan S., Adsorption of methylene blue dye from aqueous solution using low-cost adsorbent: kinetic, isotherm adsorption, and thermodynamic studies, Environ Monit Assess, 195 (2023) 676.
  • [25] Ayawei N., Ebelegi A.N., Wankasi D., Modelling and Interpretation of Adsorption Isotherms, J Chem., 2017 (2017) 3039817.
  • [26] Şenol Z.M., Gül Ü.D., Şimşek S., Bioremoval of Safranin O dye by the identified lichen species called Evernia prunastri biomass; biosorption optimization, isotherms, kinetics, and thermodynamics, Biomass Convers Biorefinery., 12 (2022) 4127–37.
  • [27] Mohammed R.A., Walli H.A., A Study of Removal of Lead (II) Ions from Aqueous Solution on Chitosan-g-poly (acrylic acid-co-crotonic acid) Hydrogel, Int J Drug Deliv Technol., 12 (2022) 1844–8.
  • [28] Keskin Z.S., Şenol Z.M., Kaya S., Şimşek S., Prunus mahaleb shell as a sustainable bioresource for carminic acid removal from aqueous solution: Experimental and theoretical studies, J. Mol. Struct., 1275 (2023) 134618.
  • [29] Al-Ghouti M.A., Da’ana D.A., Guidelines for the use and interpretation of adsorption isotherm models: A review, J. Hazard Mater., 393 (2020) 122383.
  • [30] Dada A.O., Adekola F.A., Odebunmi E.O., Dada F.E., Bello O.M., Akinyemi B.A., et al., Sustainable and low-cost Ocimum gratissimum for biosorption of indigo carmine dye: kinetics, isotherm, and thermodynamic studies, Int. J. Phytoremediation,. 22 (2020) 1524–37.
  • [31] Şenol Z.M., Çetinkaya S., Yenidünya A.F., Başoğlu-Ünal F., Ece A., Epichlorohydrin and tripolyphosphate-crosslinked chitosan–kaolin composite for Auramine O dye removal from aqueous solutions: Experimental study and DFT calculations, Int. J. Biol. Macromol., 199 (2022) 318–30.
  • [32] Sözüdoğru O., Investigation of Effective Removal of Auramine O Dye by Pyracantha Coccinea Biosorbent: Isotherm and Kinetics, Brill Eng.,4 (2023) 1–6.
  • [33] Vaid V., Jindal R., Biodegradable tamarind kernel powder/kappa-carrageenan hydrogel for efficient removal of cationic dyes from effluents, Water Environ. Res., 95 (2023) 1–21.
  • [34] Shakeri S., Rafiee Z., Dashtian K., Fe3O4-Based Melamine-Rich Covalent Organic Polymer for Simultaneous Removal of Auramine O and Rhodamine B., J. Chem. Eng. Data, 65 (2020) 696–705.
  • [35] Duarte E.D.V., Vieira W.T., Góes R.O., de Azevedo L.E.C., Vieira M.G.A., da Silva M.G.C., et al., Amazon raw clay as a precursor of a clay-based adsorbent: experimental study and DFT analysis for the adsorption of Basic Yellow 2 dye, Environ. Sci. Pollut. Res., 30 (2023) 62602–24. A
  • [36] Şenol Z.M., Şimşek S, Equilibrium, kinetics and thermodynamics of Pb(II) ions from aqueous solution by adsorption onto chitosan-dolomite composite beads, Int. J. Environ. Anal. Chem., 102(17) (2022) 4926–40.
  • [37] Thompson C.O., Ndukwe A.O., Asadu C.O., Application of activated biomass waste as an adsorbent for the removal of lead (II) ion from wastewater, Emerg Contam., 6 (2020) 259–67.
  • [38] Şenol Z.M, El Messaoudi N., Fernine Y., Keskin Z.S., Bioremoval of rhodamine B dye from aqueous solution by using agricultural solid waste ( almond shell ): experimental and DFT modeling studies, Biomass Convers Biorefinery, (2023) https://doi.org/10.1007/s13399-023-03781-1.
  • [39] Zafar L., Khan A., Kamran U., Park S., Nawaz H., Eucalyptus ( camaldulensis ) bark-based composites for efficient Basic Blue 41 dye biosorption from aqueous stream : Kinetics , isothermal , and thermodynamic studies, Surfaces and Interfaces , 31 (2022) 101897.
There are 39 citations in total.

Details

Primary Language English
Subjects Solution Chemistry
Journal Section Natural Sciences
Authors

Zehra Saba Keskin 0000-0003-1334-5158

Publication Date June 30, 2024
Submission Date March 22, 2024
Acceptance Date June 14, 2024
Published in Issue Year 2024Volume: 45 Issue: 2

Cite

APA Keskin, Z. S. (2024). Effective Biosorption of Auramin O Dye with Sustainable Chickpea Pods Waste; Isotherms, Kinetics and Thermodynamic Analysis. Cumhuriyet Science Journal, 45(2), 240-248. https://doi.org/10.17776/csj.1457268