Research Article
BibTex RIS Cite

Electrochemical Oxidation of Ranitidine using a Boron-Doped Diamond Electrode in the Presence of Anionic Surfactant: A Comprehensive Investigation

Year 2024, Volume: 45 Issue: 2, 249 - 255, 30.06.2024
https://doi.org/10.17776/csj.1423273

Abstract

Ranitidine (RAN) is a drug from the histamine H2 receptor antagonist class and is used to prevent excessive production of stomach acid. An electrochemical investigation of the RAN in pharmaceutical preparation and spiked human urine was performed for the using a boron-doped diamond electrode (BDDE). Voltammetric measurements were performed in a pH 11 BR solution supplemented with the anionic surfactant, sodium dodecyl sulfate (SDS). In the proposed method using optimized experimental conditions, linearity was obtained for RAN in the concentration range of 0.8-50.0 μM. The LOD value obtained is 0.22 μM. Good selectivity, accuracy, precision, and acceptable repeatability were also achieved in this proposed electrochemical sensor. Finally, this electrochemical sensor was successfully used for RAN detection in pharmaceutical samples.

References

  • [1] Helman C. A., Tim L. O., Pharmacology and Clinical Efficacy of Ranitidine, a New H2‐Receptor Antagonist, Pharmacother. J. Hum. Pharmacol. Drug Ther., 3(4) (1983) 185-191.
  • [2] Dawson J., Richards D. A., Stables R., Dixon G. T., Cockel R., Ranitidine—Pharmacology and Clinical use, J. Clin. Pharm. Ther., 8(1) (1983) 1-13.
  • [3] Ashiru D. A., Patel R., Basit A. W., Simple and Universal HPLC-UV Method to Determine Cimetidine, Ranitidine, Famotidine, and Nizatidine ın Urine: Application to the Analysis of Ranitidine and its Metabolites in Human volunteers, J. Chromatogr. B, 860(2) (2007) 235-240.
  • [4] Psoma A. K., Rousis N. I., Georgantzi E. N., Τhomaidis Ν. S., An Integrated Approach to MS-based Identification and Risk Assessment of Pharmaceutical Biotransformation in Wastewater, Sci. Total Environ., 770 (2021) 144677.
  • [5] Zendelovska D., Stafilov T., Development of an HPLC method for the Determination of Ranitidine and Cimetidine in Human Plasma Following SPE, J. Pharm. Biomed. Anal., 33(2) (2003) 165-173.
  • [6] Castro A., Arancibia A., Romero P., Gai M. N., Validated HPLC method for the Determination of Ranitidine in Plasma, Die Pharm. Int. J. Pharm. Sci., 58(10) (2003) 696-698.
  • [7] Haque T., Takulder M. M. U., Laila S., Fatema K., Development and Validation of RP-HPLC method for Simultaneous Estimation of Naproxen and Ranitidine Hydrochloride, Pak. J. Pharm. Sci., 23(4) (2010) 379-383.
  • [8] Babu B., Hemnath E., Jeyaprakash M., Krishnaveni N., Meyyanathan S., Raja R., Venkatesh D., A RP-HPLC method for Simultaneous Estimation of Ondansetron and Ranitidine in Pharmaceutical Formulation, Int. J. Heal. Allied Sci., 1(2) (2012) 129-129.
  • [9] Kiszkiel-Taudul I., Starczewska B., Jabłońska A., Ionic Liquid-based Ultrasound-assisted Emulsification Microextraction for the Determination of Ranitidine in Water Samples and Pharmaceutical Preparations, New J. of Chem., 44(27) (2020) 11490-11497.
  • [10] El-Naem O. A., El-Maraghy C. M., A Validated Liquid Chromatography-Tandem Mass Spectrometric method for the Determination of Co-administered Ranitidine and Metronidazole in Plasma of Human Volunteers, Anal. Met., 13(23) (2021) 2586-2595.
  • [11] Paul S., Barai L., Husen F., Sarker S., Pal T. K., Bal P., Biswas S., Analytical method Development and Validation for Estimation of Ranitidine in Solid Dosage form by UV-Spectrophotometric method, Orient. J. Chem., 36(6) (2020) 1161.
  • [12] Berisha L., Jashari G., Veseli V., Shabani E., Lushaj F., Maxharraj F., Maloku A., Flow İnjection Analysis of Ranitidine based on Derivatization Reaction Producing 2‐Methylfuran Cation as a Sensitive and Selective Amperometric Detector, Electroanalysis, (2023) e202200318.
  • [13] Alshehri Y. M., Alghamdi T. S., Aldawsari F. S., HS-SPME-GC-MS as an Alternative method for NDMA Analysis in Ranitidine Products, J. Pharm. Biomed. Anal., 191 (2020) 113582.
  • [14] Júnior J. G. F., de Lima A. R. B., de Freitas A. J. D., de Freitas J. D., Limad P. R., de Abreu F. C., Meneses D., Paper based Device (PAD) for Colorimetric Determination of Ranitidine in Pharmaceutical Samples, Microchem. J., 178 (2022) 107336.
  • [15] Zounr R. A., Khuhawar M. Y., Khuhawar T. M., Lanjwani M. F., Khuhawar M. Y., GC Analysis of Metformin, Ranitidine and Famotidine from Pharmaceuticals and Human Serum, J. Chromathogr. Sci., 61(9) (2023) 807-813.
  • [16] Karahan F., Başı Z., Keskin E., Pınar P. T., Yardım Y., Şentürk Z., Electrochemical Determination of Fluoroquinolone Antibiotic Norfloxacin in the Presence of Anionic Surfactant using the Anodically Pretreated Boron‐Doped Diamond Electrode, ChemistrySelect, 5(42) (2020) 12862-12868.
  • [17] Allahverdiyeva S., Pınar P. T., Yardım Y., Şentürk Z., First Report for the Electrochemical Investigation of a New HIV İntegrase İnhibitor Dolutegravir: Its Voltammetric Determination in Tablet Dosage Forms and Human Urine using a Boron-Doped Diamond Electrode, Diam. Relat. Mater., 114 (2021) 108332.
  • [18] Pınar P. T., Yardım Y., Gülcan M., Şentürk Z., The First Approach for the Simultaneous Quantification of İsoproturon, Carbendazim, and Carbofuran at the Surface of a MIL-101 (Cr) Metal-organic Framework-based Electrode, Inorg. Chem. Commun., (2023) 111327.
  • [19] Ali H. S., Barzani H. A., Yardım Y., Utilizing Epicatechin Voltammetric Oxidation Signal for the Estimation of Total Phenolic Content in the Tea Samples via the Unmodified Boron-Doped Diamond Electrode Surface, Microchem. J., 189 (2023) 108572.
  • [20] Pınar P. T., Yardım Y., Şentürk Z., Square-wave Voltammetric Sensing of Lawsone (2-hydroxy-1, 4-naphthoquinone) based on the Enhancement Effect of Cationic Surfactant on Anodically Pretreated Boron-Doped Diamond Electrode, Acta Chim. Slov, 68(4) (2021) 1027-1032.
  • [21] Švorc Ľ., Rievaj M., Bustin D., Green Electrochemical Sensor for Environmental Monitoring of Pesticides: Determination of Atrazine in River Waters using a Boron-Doped Diamond Electrode, Sensors and Actuators B: Chem., 181 (2013) 294-300.
  • [22] Budak F., Cetinkay, A., Kaya S. I., Atici E. B., Ozkan S. A., Sensitive Determination and Electrochemical Evaluation of Anticancer Drug Tofacitinib in Pharmaceutical and Biological Samples using Glassy Carbon and Boron-Doped Diamond Electrodes, Diam. Relat. Mater., 133 (2023) 109751.
  • [23] Kaya S., Cetinkaya A., Ozkan S. A., Surfactant Sensors for Pharmaceutical/Medical Applications, 23(3) (2023) 163-192.
  • [24] Barzani H. A., Yardım Y., First Approach for the Voltammetric Sensing of Rifabutin by the use of Cationic Surfactant Media on the Boron-Doped Diamond Electrode, Diam. Relat. Mater., 132 (2023) 109658.
  • [25] Mete C., Pınar P. T., Using a Boron‐Doped Diamond Electrode in Anionic Surfactant Media as an Improved Electrochemical Sensor for the Anticancer Drug Ibrutinib, Chemistry Select, 8(6) (2023) e202204492.
  • [26] Pilz F. H., Kielb P., Cyclic voltammetry, Square Wave Voltammetry or Electrochemical İmpedance Spectroscopy? Interrogating Electrochemical Approaches for the Determination of Electron Transfer Rates of İmmobilized Redox Proteins, BBA Advances, 4 (2023) 100095.
  • [27] Pınar P. T., Yardım Y., Şentürk Z., Electrochemical Oxidation
Year 2024, Volume: 45 Issue: 2, 249 - 255, 30.06.2024
https://doi.org/10.17776/csj.1423273

Abstract

References

  • [1] Helman C. A., Tim L. O., Pharmacology and Clinical Efficacy of Ranitidine, a New H2‐Receptor Antagonist, Pharmacother. J. Hum. Pharmacol. Drug Ther., 3(4) (1983) 185-191.
  • [2] Dawson J., Richards D. A., Stables R., Dixon G. T., Cockel R., Ranitidine—Pharmacology and Clinical use, J. Clin. Pharm. Ther., 8(1) (1983) 1-13.
  • [3] Ashiru D. A., Patel R., Basit A. W., Simple and Universal HPLC-UV Method to Determine Cimetidine, Ranitidine, Famotidine, and Nizatidine ın Urine: Application to the Analysis of Ranitidine and its Metabolites in Human volunteers, J. Chromatogr. B, 860(2) (2007) 235-240.
  • [4] Psoma A. K., Rousis N. I., Georgantzi E. N., Τhomaidis Ν. S., An Integrated Approach to MS-based Identification and Risk Assessment of Pharmaceutical Biotransformation in Wastewater, Sci. Total Environ., 770 (2021) 144677.
  • [5] Zendelovska D., Stafilov T., Development of an HPLC method for the Determination of Ranitidine and Cimetidine in Human Plasma Following SPE, J. Pharm. Biomed. Anal., 33(2) (2003) 165-173.
  • [6] Castro A., Arancibia A., Romero P., Gai M. N., Validated HPLC method for the Determination of Ranitidine in Plasma, Die Pharm. Int. J. Pharm. Sci., 58(10) (2003) 696-698.
  • [7] Haque T., Takulder M. M. U., Laila S., Fatema K., Development and Validation of RP-HPLC method for Simultaneous Estimation of Naproxen and Ranitidine Hydrochloride, Pak. J. Pharm. Sci., 23(4) (2010) 379-383.
  • [8] Babu B., Hemnath E., Jeyaprakash M., Krishnaveni N., Meyyanathan S., Raja R., Venkatesh D., A RP-HPLC method for Simultaneous Estimation of Ondansetron and Ranitidine in Pharmaceutical Formulation, Int. J. Heal. Allied Sci., 1(2) (2012) 129-129.
  • [9] Kiszkiel-Taudul I., Starczewska B., Jabłońska A., Ionic Liquid-based Ultrasound-assisted Emulsification Microextraction for the Determination of Ranitidine in Water Samples and Pharmaceutical Preparations, New J. of Chem., 44(27) (2020) 11490-11497.
  • [10] El-Naem O. A., El-Maraghy C. M., A Validated Liquid Chromatography-Tandem Mass Spectrometric method for the Determination of Co-administered Ranitidine and Metronidazole in Plasma of Human Volunteers, Anal. Met., 13(23) (2021) 2586-2595.
  • [11] Paul S., Barai L., Husen F., Sarker S., Pal T. K., Bal P., Biswas S., Analytical method Development and Validation for Estimation of Ranitidine in Solid Dosage form by UV-Spectrophotometric method, Orient. J. Chem., 36(6) (2020) 1161.
  • [12] Berisha L., Jashari G., Veseli V., Shabani E., Lushaj F., Maxharraj F., Maloku A., Flow İnjection Analysis of Ranitidine based on Derivatization Reaction Producing 2‐Methylfuran Cation as a Sensitive and Selective Amperometric Detector, Electroanalysis, (2023) e202200318.
  • [13] Alshehri Y. M., Alghamdi T. S., Aldawsari F. S., HS-SPME-GC-MS as an Alternative method for NDMA Analysis in Ranitidine Products, J. Pharm. Biomed. Anal., 191 (2020) 113582.
  • [14] Júnior J. G. F., de Lima A. R. B., de Freitas A. J. D., de Freitas J. D., Limad P. R., de Abreu F. C., Meneses D., Paper based Device (PAD) for Colorimetric Determination of Ranitidine in Pharmaceutical Samples, Microchem. J., 178 (2022) 107336.
  • [15] Zounr R. A., Khuhawar M. Y., Khuhawar T. M., Lanjwani M. F., Khuhawar M. Y., GC Analysis of Metformin, Ranitidine and Famotidine from Pharmaceuticals and Human Serum, J. Chromathogr. Sci., 61(9) (2023) 807-813.
  • [16] Karahan F., Başı Z., Keskin E., Pınar P. T., Yardım Y., Şentürk Z., Electrochemical Determination of Fluoroquinolone Antibiotic Norfloxacin in the Presence of Anionic Surfactant using the Anodically Pretreated Boron‐Doped Diamond Electrode, ChemistrySelect, 5(42) (2020) 12862-12868.
  • [17] Allahverdiyeva S., Pınar P. T., Yardım Y., Şentürk Z., First Report for the Electrochemical Investigation of a New HIV İntegrase İnhibitor Dolutegravir: Its Voltammetric Determination in Tablet Dosage Forms and Human Urine using a Boron-Doped Diamond Electrode, Diam. Relat. Mater., 114 (2021) 108332.
  • [18] Pınar P. T., Yardım Y., Gülcan M., Şentürk Z., The First Approach for the Simultaneous Quantification of İsoproturon, Carbendazim, and Carbofuran at the Surface of a MIL-101 (Cr) Metal-organic Framework-based Electrode, Inorg. Chem. Commun., (2023) 111327.
  • [19] Ali H. S., Barzani H. A., Yardım Y., Utilizing Epicatechin Voltammetric Oxidation Signal for the Estimation of Total Phenolic Content in the Tea Samples via the Unmodified Boron-Doped Diamond Electrode Surface, Microchem. J., 189 (2023) 108572.
  • [20] Pınar P. T., Yardım Y., Şentürk Z., Square-wave Voltammetric Sensing of Lawsone (2-hydroxy-1, 4-naphthoquinone) based on the Enhancement Effect of Cationic Surfactant on Anodically Pretreated Boron-Doped Diamond Electrode, Acta Chim. Slov, 68(4) (2021) 1027-1032.
  • [21] Švorc Ľ., Rievaj M., Bustin D., Green Electrochemical Sensor for Environmental Monitoring of Pesticides: Determination of Atrazine in River Waters using a Boron-Doped Diamond Electrode, Sensors and Actuators B: Chem., 181 (2013) 294-300.
  • [22] Budak F., Cetinkay, A., Kaya S. I., Atici E. B., Ozkan S. A., Sensitive Determination and Electrochemical Evaluation of Anticancer Drug Tofacitinib in Pharmaceutical and Biological Samples using Glassy Carbon and Boron-Doped Diamond Electrodes, Diam. Relat. Mater., 133 (2023) 109751.
  • [23] Kaya S., Cetinkaya A., Ozkan S. A., Surfactant Sensors for Pharmaceutical/Medical Applications, 23(3) (2023) 163-192.
  • [24] Barzani H. A., Yardım Y., First Approach for the Voltammetric Sensing of Rifabutin by the use of Cationic Surfactant Media on the Boron-Doped Diamond Electrode, Diam. Relat. Mater., 132 (2023) 109658.
  • [25] Mete C., Pınar P. T., Using a Boron‐Doped Diamond Electrode in Anionic Surfactant Media as an Improved Electrochemical Sensor for the Anticancer Drug Ibrutinib, Chemistry Select, 8(6) (2023) e202204492.
  • [26] Pilz F. H., Kielb P., Cyclic voltammetry, Square Wave Voltammetry or Electrochemical İmpedance Spectroscopy? Interrogating Electrochemical Approaches for the Determination of Electron Transfer Rates of İmmobilized Redox Proteins, BBA Advances, 4 (2023) 100095.
  • [27] Pınar P. T., Yardım Y., Şentürk Z., Electrochemical Oxidation
There are 27 citations in total.

Details

Primary Language English
Subjects Electroanalytical Chemistry, Analytical Chemistry (Other)
Journal Section Natural Sciences
Authors

Hasret Subak 0000-0003-0100-2529

Pınar Talay Pınar 0000-0003-1027-1456

Publication Date June 30, 2024
Submission Date January 21, 2024
Acceptance Date April 6, 2024
Published in Issue Year 2024Volume: 45 Issue: 2

Cite

APA Subak, H., & Talay Pınar, P. (2024). Electrochemical Oxidation of Ranitidine using a Boron-Doped Diamond Electrode in the Presence of Anionic Surfactant: A Comprehensive Investigation. Cumhuriyet Science Journal, 45(2), 249-255. https://doi.org/10.17776/csj.1423273