Research Article
BibTex RIS Cite

Electrospun Poly(ϵ-caprolactone) Nanofibers Containing Pomegranate Peel Extract and Bioactive Glass as Potential Wound Dressings

Year 2024, Volume: 45 Issue: 1, 88 - 93, 28.03.2024
https://doi.org/10.17776/csj.1383556

Abstract

This study focuses on the effect of pomegranate peel extract (PPE) as a natural medicinal substance and 45S5 bioglass (BG) particles as a bioactive material on the microstructure, antioxidant properties, and fibroblast cell cytotoxicity of biocompatible poly(ε-caprolactone) (PCL) nanofiber scaffolds. The hybrid nanofibers were fabricated via the electrospinning technique. The microstructure of nanofiber scaffolds was characterized by using scanning electron microscopy (SEM). The results indicated that the incorporation of PPE and BG particles did not change the morphology of the fibrous structure of the PCL nanofiber scaffolds. The DPPH analysis was performed to determine the antioxidant properties of nanofiber scaffolds and demonstrated that the incorporation of PPE improves the antioxidant properties of scaffolds. Cell cytotoxicity studies using fibroblast L929 cells also showed that high cell viability values were observed for hybrid PPE and BG loaded PCL nanofiber scaffolds. The findings proved that the integration of PPE and BG particles into PCL nanofibers yielded favorable characteristics suitable for wound dressing purposes, involving improved antioxidant capacity.

References

  • [1] Dhivya S., Padma V.V., Santhini E., Wound dressings - A review, Biomed. 5 (4) (2015) 22.
  • [2] Yang M., Yu S., Zhao P., Shi G., Guo Y., Xie L, Lyu G., Yu J., Fabrication of biologically inspired electrospun collagen/silk fibroin/bioactive glass composited nanofibrous to accelerate the treatment efficiency of wound repair, Int. Wound J. 20 (3) (2023) 687-698.
  • [3] Sergi R., Bellucci D., Salvatori R., Cannillo V., Chitosan-based bioactive glass gauze: Microstructural properties, in vitro bioactivity, and biological tests, Materials (Basel), 13 (12) (2020) 2819.
  • [4] Zhou J., Wang H., Zhao S., Zhou N., Li L., Huang W., Huang W., Wang D., Zhang C., In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing, Mater. Sci. Eng. C. 60 (2016) 437-445.
  • [5] Baino F., Bioactive glasses – When glass science and technology meet regenerative medicine, Ceram. Int. 44 (13) (2018) 14953-14966.
  • [6] Bakar S.A.A, Ali A.M., Noor S.N.F.M., Hamid S.B.S., Azhar N.A., Mohamad N.M., Ahmad N.H., Combination of Goniothalamin and Sol-Gel-Derived Bioactive Glass 45S5 Enhances Growth Inhibitory Activity via Apoptosis Induction and Cell Cycle Arrest in Breast Cancer Cells MCF-7, Biomed Res. Int. 2022 (2022).
  • [7] Nandhakumar M., Thangaian D.T., Sundaram S., Roy A., Subramanian B., An enduring in vitro wound healing phase recipient by bioactive glass-graphene oxide nanocomposites, Sci. Rep. 12 (1) (2022) 16162.
  • [8] Deliormanlı A.M, Konyalı R., Bioactive glass/hydroxyapatite-containing electrospun poly(ε-caprolactone) composite nanofibers for bone tissue engineering, J. Aust. Ceram. Soc. 55 (2) (2019) 247-256.
  • [9] Sergi R., Cannillo V., Boccaccini A.R., Liverani L., Incorporation of bioactive glasses containing Mg, Sr, and Zn in electrospun PCL fibers by using benign solvents, Appl. Sci. 10 (16) (2020) 5530.
  • [10] Akturk A., Erol-Taygun M., Goller G., Küçükbayrak S., Optimization and characterization of poly(ℇ-caprolactone) nanofiber mats doped with bioactive glass and copper metal nanoparticles, Chem. Pap. 75 (11) (2021) 5929-5943.
  • [11] Mehrabi T., Mesgar A.S, Mohammadi Z., Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing, ACS Biomater. Sci. Eng. 6 (10) (2020) 5599-5430.
  • [12] Ghiyasi Y., Salahi E., Esfahani H., Synergy effect of Urtica dioica and ZnO NPs on microstructure, antibacterial activity and cytotoxicity of electrospun PCL scaffold for wound dressing application, Mater. Today Commun. 26 (2021) 102163.
  • [13] Dziadek M., Dziadek K., Checinska K., Zagrajczuk B., Golda-Cepa M., Brzychczy-Wloch M, Kopec E., Menaszek, E., Kopec, A., Cholewa-Kowalska, K., PCL and PCL/bioactive glass biomaterials as carriers for biologically active polyphenolic compounds: Comprehensive physicochemical and biological evaluation, Bioact. Mater. 6 (6) (2021) 1811-1826.
  • [14] Atsü A.N., Tosuner Z., Bilgiç T., Evaluation of the Effect of Pomegranate Seed Oil on Healing in a Rat Wound Model With Antioxidant, Vascular, and Histopathological Parameters, Int. J. Low. Extrem. Wounds (2021) 15347346211040593.
  • [15] Pamisetty A., Kumar K.A., Indrani D., Singh R.P., Rheological, physico-sensory and antioxidant properties of punicic acid rich wheat bread, J. Food Sci. Technol. 57 (1) (2020) 253-262.
  • [16] Bokhari N., Fatima T., Nosheen S., Iqbal F., Moeen F., Sharif F., Bioactive bacterial cellulose–chitosan composite scaffolds for prospective periodontal tissue regeneration, J. Mater. Res. 38 (7) (2023) 1952-1962.
  • [17] Mutra J.K.R, Jujjavarapu S.E., Verma N., Emergence of Plant-Based Decellularized Scaffolds for Tissue Regeneration: A Review, ACS Sustain. Chem. Eng. 11(17) (2023) 6485–6497.
  • [18] Azarfam M.Y., Nasirinezhad M., Naeim H., Zarrintaj P., Saeb M., A green composite based on gelatin/agarose/zeolite as a potential scaffold for tissue engineering applications, J. Compos. Sci. 5 (5 (2021) 125.
  • [19] Garcia C.F., Marangon C.A., Massimino L.C., Klingbeil M.F.G., Martins V.C.A., de Guzzi Plepis A.M., Development of collagen/nanohydroxyapatite scaffolds containing plant extract intended for bone regeneration, Mater. Sci. Eng. C 123 (2021) 111955.
  • [20] Costa N.N., de Faria Lopes L., Ferreira D.F., de Prado E.M.L., Severi J.A., Resende J.A., de Paula Careta F., Ferreira M.C.P., Carreira L.G., de Souza S.O.L., Cotrim M.A.P., Polymeric films containing pomegranate peel extract based on PVA/starch/PAA blends for use as wound dressing: In vitro analysis and physicochemical evaluation, Mater. Sci. Eng. C 109 (2020) 110643.
  • [21] Karabulut H., Ulag S., Dalbayrak B., Arisan E.D., Taskin T., Guncu M.M., Aksu B., Valanezhad A., Gunduz, O., A Novel Approach for the Fabrication of 3D-Printed Dental Membrane Scaffolds including Antimicrobial Pomegranate Extract, Pharmaceutics 15 (3) (2023) 737.
  • [22] Akturk A., Erol Taygun M., Goller G., Optimization of the electrospinning process variables for gelatin/silver nanoparticles/bioactive glass nanocomposites for bone tissue engineering, Polym. Compos. 41 (6) (2020) 2411-2425.
  • [23] Bodbodak S., Shahabi N., Mohammadi M., Ghorbani M. Pezeshki A., Development of a Novel Antimicrobial Electrospun Nanofiber Based on Polylactic Acid/Hydroxypropyl Methylcellulose Containing Pomegranate Peel Extract for Active Food Packaging, Food Bioprocess Technol.14(12) (2021) 2260-2272.
  • [24] Murphy R., Turcott A., Banuelos L., Dowey E., Goodwin B., Cardinal, K. O. H., Simpoly: A Matlab-based image analysis tool to measure electrospun polymer scaffold fiber diameter,Tissue Eng. Part C Methods, 26(12), (2020) 628-636.
  • [25] He L., Lan W., Ahmed S., Qin W., Liu Y., Electrospun polyvinyl alcohol film containing pomegranate peel extract and sodium dehydroacetate for use as food packaging, Food Packag. Shelf Life 22 (2019) 100390.
  • [26] Ul-Islam M., Alhajaim W., Fatima A., Yasir S., Kamal T., Abbas Y., Khan S., Khan A.H., Manan S., Ullah M.W., Yang, G., Development of low-cost bacterial cellulose-pomegranate peel extract-based antibacterial composite for potential biomedical applications, Int. J. Biol. Macromol. 231 (2023) 123269.
  • [27] Anaya-Mancipe J.M., Queiroz V.M., Dos Santos R.F., Castro R.N., Cardoso V.S., Vermelho A.B., Dias M.L., Thiré R.M., Electrospun Nanofibers Loaded with Plantago major L. Extract for Potential Use in Cutaneous Wound Healing, Pharmaceutics 24 15(4) (2023) 1047.
Year 2024, Volume: 45 Issue: 1, 88 - 93, 28.03.2024
https://doi.org/10.17776/csj.1383556

Abstract

References

  • [1] Dhivya S., Padma V.V., Santhini E., Wound dressings - A review, Biomed. 5 (4) (2015) 22.
  • [2] Yang M., Yu S., Zhao P., Shi G., Guo Y., Xie L, Lyu G., Yu J., Fabrication of biologically inspired electrospun collagen/silk fibroin/bioactive glass composited nanofibrous to accelerate the treatment efficiency of wound repair, Int. Wound J. 20 (3) (2023) 687-698.
  • [3] Sergi R., Bellucci D., Salvatori R., Cannillo V., Chitosan-based bioactive glass gauze: Microstructural properties, in vitro bioactivity, and biological tests, Materials (Basel), 13 (12) (2020) 2819.
  • [4] Zhou J., Wang H., Zhao S., Zhou N., Li L., Huang W., Huang W., Wang D., Zhang C., In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing, Mater. Sci. Eng. C. 60 (2016) 437-445.
  • [5] Baino F., Bioactive glasses – When glass science and technology meet regenerative medicine, Ceram. Int. 44 (13) (2018) 14953-14966.
  • [6] Bakar S.A.A, Ali A.M., Noor S.N.F.M., Hamid S.B.S., Azhar N.A., Mohamad N.M., Ahmad N.H., Combination of Goniothalamin and Sol-Gel-Derived Bioactive Glass 45S5 Enhances Growth Inhibitory Activity via Apoptosis Induction and Cell Cycle Arrest in Breast Cancer Cells MCF-7, Biomed Res. Int. 2022 (2022).
  • [7] Nandhakumar M., Thangaian D.T., Sundaram S., Roy A., Subramanian B., An enduring in vitro wound healing phase recipient by bioactive glass-graphene oxide nanocomposites, Sci. Rep. 12 (1) (2022) 16162.
  • [8] Deliormanlı A.M, Konyalı R., Bioactive glass/hydroxyapatite-containing electrospun poly(ε-caprolactone) composite nanofibers for bone tissue engineering, J. Aust. Ceram. Soc. 55 (2) (2019) 247-256.
  • [9] Sergi R., Cannillo V., Boccaccini A.R., Liverani L., Incorporation of bioactive glasses containing Mg, Sr, and Zn in electrospun PCL fibers by using benign solvents, Appl. Sci. 10 (16) (2020) 5530.
  • [10] Akturk A., Erol-Taygun M., Goller G., Küçükbayrak S., Optimization and characterization of poly(ℇ-caprolactone) nanofiber mats doped with bioactive glass and copper metal nanoparticles, Chem. Pap. 75 (11) (2021) 5929-5943.
  • [11] Mehrabi T., Mesgar A.S, Mohammadi Z., Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing, ACS Biomater. Sci. Eng. 6 (10) (2020) 5599-5430.
  • [12] Ghiyasi Y., Salahi E., Esfahani H., Synergy effect of Urtica dioica and ZnO NPs on microstructure, antibacterial activity and cytotoxicity of electrospun PCL scaffold for wound dressing application, Mater. Today Commun. 26 (2021) 102163.
  • [13] Dziadek M., Dziadek K., Checinska K., Zagrajczuk B., Golda-Cepa M., Brzychczy-Wloch M, Kopec E., Menaszek, E., Kopec, A., Cholewa-Kowalska, K., PCL and PCL/bioactive glass biomaterials as carriers for biologically active polyphenolic compounds: Comprehensive physicochemical and biological evaluation, Bioact. Mater. 6 (6) (2021) 1811-1826.
  • [14] Atsü A.N., Tosuner Z., Bilgiç T., Evaluation of the Effect of Pomegranate Seed Oil on Healing in a Rat Wound Model With Antioxidant, Vascular, and Histopathological Parameters, Int. J. Low. Extrem. Wounds (2021) 15347346211040593.
  • [15] Pamisetty A., Kumar K.A., Indrani D., Singh R.P., Rheological, physico-sensory and antioxidant properties of punicic acid rich wheat bread, J. Food Sci. Technol. 57 (1) (2020) 253-262.
  • [16] Bokhari N., Fatima T., Nosheen S., Iqbal F., Moeen F., Sharif F., Bioactive bacterial cellulose–chitosan composite scaffolds for prospective periodontal tissue regeneration, J. Mater. Res. 38 (7) (2023) 1952-1962.
  • [17] Mutra J.K.R, Jujjavarapu S.E., Verma N., Emergence of Plant-Based Decellularized Scaffolds for Tissue Regeneration: A Review, ACS Sustain. Chem. Eng. 11(17) (2023) 6485–6497.
  • [18] Azarfam M.Y., Nasirinezhad M., Naeim H., Zarrintaj P., Saeb M., A green composite based on gelatin/agarose/zeolite as a potential scaffold for tissue engineering applications, J. Compos. Sci. 5 (5 (2021) 125.
  • [19] Garcia C.F., Marangon C.A., Massimino L.C., Klingbeil M.F.G., Martins V.C.A., de Guzzi Plepis A.M., Development of collagen/nanohydroxyapatite scaffolds containing plant extract intended for bone regeneration, Mater. Sci. Eng. C 123 (2021) 111955.
  • [20] Costa N.N., de Faria Lopes L., Ferreira D.F., de Prado E.M.L., Severi J.A., Resende J.A., de Paula Careta F., Ferreira M.C.P., Carreira L.G., de Souza S.O.L., Cotrim M.A.P., Polymeric films containing pomegranate peel extract based on PVA/starch/PAA blends for use as wound dressing: In vitro analysis and physicochemical evaluation, Mater. Sci. Eng. C 109 (2020) 110643.
  • [21] Karabulut H., Ulag S., Dalbayrak B., Arisan E.D., Taskin T., Guncu M.M., Aksu B., Valanezhad A., Gunduz, O., A Novel Approach for the Fabrication of 3D-Printed Dental Membrane Scaffolds including Antimicrobial Pomegranate Extract, Pharmaceutics 15 (3) (2023) 737.
  • [22] Akturk A., Erol Taygun M., Goller G., Optimization of the electrospinning process variables for gelatin/silver nanoparticles/bioactive glass nanocomposites for bone tissue engineering, Polym. Compos. 41 (6) (2020) 2411-2425.
  • [23] Bodbodak S., Shahabi N., Mohammadi M., Ghorbani M. Pezeshki A., Development of a Novel Antimicrobial Electrospun Nanofiber Based on Polylactic Acid/Hydroxypropyl Methylcellulose Containing Pomegranate Peel Extract for Active Food Packaging, Food Bioprocess Technol.14(12) (2021) 2260-2272.
  • [24] Murphy R., Turcott A., Banuelos L., Dowey E., Goodwin B., Cardinal, K. O. H., Simpoly: A Matlab-based image analysis tool to measure electrospun polymer scaffold fiber diameter,Tissue Eng. Part C Methods, 26(12), (2020) 628-636.
  • [25] He L., Lan W., Ahmed S., Qin W., Liu Y., Electrospun polyvinyl alcohol film containing pomegranate peel extract and sodium dehydroacetate for use as food packaging, Food Packag. Shelf Life 22 (2019) 100390.
  • [26] Ul-Islam M., Alhajaim W., Fatima A., Yasir S., Kamal T., Abbas Y., Khan S., Khan A.H., Manan S., Ullah M.W., Yang, G., Development of low-cost bacterial cellulose-pomegranate peel extract-based antibacterial composite for potential biomedical applications, Int. J. Biol. Macromol. 231 (2023) 123269.
  • [27] Anaya-Mancipe J.M., Queiroz V.M., Dos Santos R.F., Castro R.N., Cardoso V.S., Vermelho A.B., Dias M.L., Thiré R.M., Electrospun Nanofibers Loaded with Plantago major L. Extract for Potential Use in Cutaneous Wound Healing, Pharmaceutics 24 15(4) (2023) 1047.
There are 27 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Natural Sciences
Authors

Ayşen Aktürk 0000-0003-2880-2999

Publication Date March 28, 2024
Submission Date October 30, 2023
Acceptance Date March 12, 2024
Published in Issue Year 2024Volume: 45 Issue: 1

Cite

APA Aktürk, A. (2024). Electrospun Poly(ϵ-caprolactone) Nanofibers Containing Pomegranate Peel Extract and Bioactive Glass as Potential Wound Dressings. Cumhuriyet Science Journal, 45(1), 88-93. https://doi.org/10.17776/csj.1383556