Research Article
BibTex RIS Cite

A Novel Triazolopyrimidinone Derivative: A Portable Electrochemical Approach to Investigate DNA Interactions

Year 2023, Volume: 44 Issue: 4, 617 - 624, 28.12.2023
https://doi.org/10.17776/csj.1344756

Abstract

In this study, a novel triazolopyrimidinone derivative, 2-(2-chlorophenyl)-5-(morpholinomethyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7(3H)-one, abbreviated as CPD-1, was synthesized as a drug candidate. By employing electrochemical techniques, we analyzed the electrochemical behavior of this compound and its interactions with both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). Experimental parameters such as pH, concentration, scan rate, immobilization time were studied using Differential Pulse Voltammetry (DPV) and Cyclic Voltammetry (CV) to obtain the most precise analytical signals. We present an innovative approach to evaluate the toxicity effect of this drug candidate on DNA. We also propose a simplified equation to quantify toxicity effects based on changes in electrochemical signals, specifically peak current of guanine bases, before and after drug-DNA interactions. Our methodology contributes to the burgeoning field of electrochemical toxicity assessment and holds promise for advancing drug development and safety evaluation. Furthermore, stability tests for the drug candidate were conducted on different days. Notably, our investigation revealed significant alterations in guanine bases upon the interaction of CPD-1 with both ssDNA and dsDNA, underscoring the potential impact of these compounds on DNA structure. Based on our experimental data, we conclude that this molecule can be utilized as a drug due to its effects on DNA.

References

  • [1] Singh P.K., Choudhary S., Kashyap A., Verma H., Kapil S., Kumar M., Arora M., Silakari O., An exhaustive compilation on chemistry of triazolopyrimidine: A journey through decades, Bioorg. Chem., 88 (2019) 102919.
  • [2] Aliwaini S., Abu Thaher B., Al-Masri I., Shurrab N., El-Kurdi S., Schollmeyer D., Qeshta B., Ghunaim M., Csuk R., Laufer S., Kaiser L., Deigner H.P., Design, synthesis and biological evaluation of novel pyrazolo [1, 2, 4] triazolopyrimidine derivatives as potential anticancer agents, Molecules., 26(13) (2021) 4065.
  • [3] Bailey B.L., Nguyen W., Ngo A., Goodman C.D., Gancheva M.R., Favuzza P., Sanz L.M., Gamo F.J., Lowes K.N., McFadden G.I., Wilson D.W., Laleu B., Brand S., Jackson P.F., Cowman A.F., Sleebs B.E., Optimisation of 2-(N-phenyl carboxamide) triazolopyrimidine antimalarials with moderate to slow acting erythrocytic stage activity, Bioorg. Chem., 115 (2021) 105244.
  • [4] Ortiz Zacarías N.V., van Veldhoven J.P., den Hollander L.S., Dogan B., Openy J., Hsiao Y.Y., Lenselink E.B., Heitman L.H., IJzerman, A.P., Synthesis and pharmacological evaluation of triazolopyrimidinone derivatives as noncompetitive, intracellular antagonists for CC chemokine receptors 2 and 5, J. Med. Chem., 62(24) (2019) 11035-11053.
  • [5] Abd Al Moaty M.N., El Ashry E.S.H., Awad L.F., Ibrahim N.A., Abu-Serie M.M., Barakat A., Altowyan M.S., Teleb M., Enhancing the Anticancer Potential of Targeting Tumor-Associated Metalloenzymes via VEGFR Inhibition by New Triazolo [4, 3-a] pyrimidinone Acyclo C-Nucleosides Multitarget Agents, Molecules., 27(8) (2022) 2422.
  • [6] Brockman R.W., Sparks C., Hutchison D.J., Skipper H.E., A mechanism of resistance to 8-azaguanine I. Microbiological studies on the metabolism of purines and 8-azapurines, Cancer Res., 19(2) (1959) 177.
  • [7] Gigante A., Gómez-SanJuan A., Delang L., Li C., Bueno O., Gamo A.M., Priego E.M., Camarasa M.J., Jochmans D., Leyssen P., Decroly E., Coutard B., Querat G., Neyts J., Pérez-Pérez M.J., Antiviral activity of [1, 2, 3] triazolo [4, 5-d] pyrimidin-7 (6H)-ones against chikungunya virus targeting the viral capping nsP1, Antiviral Res., 144 (2017) 216-222.
  • [8] Harrison D., Bock M.G., Doedens J.R., Gabel C.A., Holloway M.K., Lewis A., Scanlon J., Sharpe A., Simpson I.D., Smolak P., Wishart G., Watt A.P., Discovery and Optimization of Triazolopyrimidinone Derivatives as Selective NLRP3 Inflammasome Inhibitors, ACS Med. Chem. Lett., 13(8) (2022) 1321-1328.
  • [9] Chung S., Sugimoto Y., Huang J., Zhang M., Iron oxide nanoparticles decorated with functional peptides for a targeted siRNA delivery to glioma cells, ACS Appl Mater Interfaces., 15(1) (2022) 106-119.
  • [10] Sabir A., Majeed M.I., Nawaz H., Rashid N., Javed M.R., Iqbal M.A., Shahid Z., Ashfaq R., Sadaf N., Fatima, R., Sehar A., Surface-enhanced Raman spectroscopy for studying the interaction of N-propyl substituted imidazole compound with salmon sperm DNA, Photodiagnosis Photodyn Ther., 41 (2023) 103262.
  • [11] Sharifi-Rad A., Amiri-Tehranizadeh Z., Talebi A., Nosrati N., Medalian M., Pejhan M., Hamzkanloo N., Saberi M.R., Mokaberi P., Chamani J., Multi spectroscopic and molecular simulation studies of propyl acridone binding to calf thymus DNA in the presence of electromagnetic force, BioImpacts: BI., 13(1) (2023) 5.
  • [12] Zhang J., Wang D., Chen H., Yuan X., Jiang X., Ai, L., He J., Chen F., Xie S., Cui C., Tan W., A pH-Responsive Covalent Nanoscale Device Enhancing Temporal and Force Stability for Specific Tumor Imaging, Nano Lett., 22(23) (2022) 9441-9449.
  • [13] Congur G., Electrochemical Biosensors for Monitoring of Drug-DNA Interactions, Curr. Top. Med. Chem., 23(4) (2023) 316-330.
  • [14] Topkaya S.N., Gelatin methacrylate (GelMA) mediated electrochemical DNA biosensor for DNA hybridization Biosensors and Bioelectronics, 64 (2015) 456-461.
  • [15] Beitollahi H., Dehghannoudeh G., Moghaddam H.M., Forootanfar H., A Sensitive Electrochemical DNA Biosensor for Anticancer Drug Topotecan Based on Graphene Carbon Paste Electrode, J. Electrochem. Soc., 164(12), (2017) H812.
  • [16] Kawde A.N., Baig N., Sajid M., Graphite pencil electrodes as electrochemical sensors for environmental analysis: a review of features, developments, and applications, RSC Adv., 6 (2016), 91325-91340
  • [17] Srinivas S., Kumar A.S., Surface-Activated Pencil Graphite Electrode for Dopamine Sensor Applications: A Critical Review, Biosens. 13(3) (2023) 353.
  • [18] Topkaya S.N., Ozyurt V.H., Cetin A.E., Otles S., Nitration of Tyrosine and Its Effect on DNA Hybridization, Biosens. Bioelectron., 102 (2018) 464-469.
  • [19] Istanbullu H., Bayraktar G., Ozturk I., Coban G., Saylam M., Design, synthesis and bioactivity studies of novel triazolopyrimidinone compounds, J. Res. Pharm., 26(1) 2022.
  • [20] Deng P., Xu Z., Kuang Y., Electrochemically reduced graphene oxide modified acetylene black paste electrode for the sensitive determination of bisphenol A, J. Electroanal. Chem., 707 (2013). 7-14.
  • [21] Brunetti B., About estimating the limit of detection by the signal to noise approach, Pharm. Anal. Acta., 6(4) (2014) e2014007.
  • [22] Armbruster D.A., Pry T., Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev., 29(Suppl 1) (2008) S49-52.
  • [23] Buleandra M., Popa D.E., David I.G., Bacalum E., David V., Ciucu A.A., Electrochemical behavior study of some selected phenylurea herbicides at activated pencil graphite electrode. Electrooxidation of linuron and monolinuron, Microchem. J., 147 (2019) 1109-1116.
  • [24] Wang X., Lim H.J., Son A., Characterization of denaturation and renaturation of DNA for DNA hybridization, Environ. Health. Toxicol., 29 (2014) e2014007.
  • [25] Sirajuddin M., Ali S., Badshah A., Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry, J. Photochem. Photobiol. B, Biol., 124 (2013) 1-19.
  • [26] Ramotowska S., Ciesielska A., Makowski M., What can electrochemical methods offer in determining DNA–drug interactions?, Molecules., 26(11) (2021) 3478.
Year 2023, Volume: 44 Issue: 4, 617 - 624, 28.12.2023
https://doi.org/10.17776/csj.1344756

Abstract

References

  • [1] Singh P.K., Choudhary S., Kashyap A., Verma H., Kapil S., Kumar M., Arora M., Silakari O., An exhaustive compilation on chemistry of triazolopyrimidine: A journey through decades, Bioorg. Chem., 88 (2019) 102919.
  • [2] Aliwaini S., Abu Thaher B., Al-Masri I., Shurrab N., El-Kurdi S., Schollmeyer D., Qeshta B., Ghunaim M., Csuk R., Laufer S., Kaiser L., Deigner H.P., Design, synthesis and biological evaluation of novel pyrazolo [1, 2, 4] triazolopyrimidine derivatives as potential anticancer agents, Molecules., 26(13) (2021) 4065.
  • [3] Bailey B.L., Nguyen W., Ngo A., Goodman C.D., Gancheva M.R., Favuzza P., Sanz L.M., Gamo F.J., Lowes K.N., McFadden G.I., Wilson D.W., Laleu B., Brand S., Jackson P.F., Cowman A.F., Sleebs B.E., Optimisation of 2-(N-phenyl carboxamide) triazolopyrimidine antimalarials with moderate to slow acting erythrocytic stage activity, Bioorg. Chem., 115 (2021) 105244.
  • [4] Ortiz Zacarías N.V., van Veldhoven J.P., den Hollander L.S., Dogan B., Openy J., Hsiao Y.Y., Lenselink E.B., Heitman L.H., IJzerman, A.P., Synthesis and pharmacological evaluation of triazolopyrimidinone derivatives as noncompetitive, intracellular antagonists for CC chemokine receptors 2 and 5, J. Med. Chem., 62(24) (2019) 11035-11053.
  • [5] Abd Al Moaty M.N., El Ashry E.S.H., Awad L.F., Ibrahim N.A., Abu-Serie M.M., Barakat A., Altowyan M.S., Teleb M., Enhancing the Anticancer Potential of Targeting Tumor-Associated Metalloenzymes via VEGFR Inhibition by New Triazolo [4, 3-a] pyrimidinone Acyclo C-Nucleosides Multitarget Agents, Molecules., 27(8) (2022) 2422.
  • [6] Brockman R.W., Sparks C., Hutchison D.J., Skipper H.E., A mechanism of resistance to 8-azaguanine I. Microbiological studies on the metabolism of purines and 8-azapurines, Cancer Res., 19(2) (1959) 177.
  • [7] Gigante A., Gómez-SanJuan A., Delang L., Li C., Bueno O., Gamo A.M., Priego E.M., Camarasa M.J., Jochmans D., Leyssen P., Decroly E., Coutard B., Querat G., Neyts J., Pérez-Pérez M.J., Antiviral activity of [1, 2, 3] triazolo [4, 5-d] pyrimidin-7 (6H)-ones against chikungunya virus targeting the viral capping nsP1, Antiviral Res., 144 (2017) 216-222.
  • [8] Harrison D., Bock M.G., Doedens J.R., Gabel C.A., Holloway M.K., Lewis A., Scanlon J., Sharpe A., Simpson I.D., Smolak P., Wishart G., Watt A.P., Discovery and Optimization of Triazolopyrimidinone Derivatives as Selective NLRP3 Inflammasome Inhibitors, ACS Med. Chem. Lett., 13(8) (2022) 1321-1328.
  • [9] Chung S., Sugimoto Y., Huang J., Zhang M., Iron oxide nanoparticles decorated with functional peptides for a targeted siRNA delivery to glioma cells, ACS Appl Mater Interfaces., 15(1) (2022) 106-119.
  • [10] Sabir A., Majeed M.I., Nawaz H., Rashid N., Javed M.R., Iqbal M.A., Shahid Z., Ashfaq R., Sadaf N., Fatima, R., Sehar A., Surface-enhanced Raman spectroscopy for studying the interaction of N-propyl substituted imidazole compound with salmon sperm DNA, Photodiagnosis Photodyn Ther., 41 (2023) 103262.
  • [11] Sharifi-Rad A., Amiri-Tehranizadeh Z., Talebi A., Nosrati N., Medalian M., Pejhan M., Hamzkanloo N., Saberi M.R., Mokaberi P., Chamani J., Multi spectroscopic and molecular simulation studies of propyl acridone binding to calf thymus DNA in the presence of electromagnetic force, BioImpacts: BI., 13(1) (2023) 5.
  • [12] Zhang J., Wang D., Chen H., Yuan X., Jiang X., Ai, L., He J., Chen F., Xie S., Cui C., Tan W., A pH-Responsive Covalent Nanoscale Device Enhancing Temporal and Force Stability for Specific Tumor Imaging, Nano Lett., 22(23) (2022) 9441-9449.
  • [13] Congur G., Electrochemical Biosensors for Monitoring of Drug-DNA Interactions, Curr. Top. Med. Chem., 23(4) (2023) 316-330.
  • [14] Topkaya S.N., Gelatin methacrylate (GelMA) mediated electrochemical DNA biosensor for DNA hybridization Biosensors and Bioelectronics, 64 (2015) 456-461.
  • [15] Beitollahi H., Dehghannoudeh G., Moghaddam H.M., Forootanfar H., A Sensitive Electrochemical DNA Biosensor for Anticancer Drug Topotecan Based on Graphene Carbon Paste Electrode, J. Electrochem. Soc., 164(12), (2017) H812.
  • [16] Kawde A.N., Baig N., Sajid M., Graphite pencil electrodes as electrochemical sensors for environmental analysis: a review of features, developments, and applications, RSC Adv., 6 (2016), 91325-91340
  • [17] Srinivas S., Kumar A.S., Surface-Activated Pencil Graphite Electrode for Dopamine Sensor Applications: A Critical Review, Biosens. 13(3) (2023) 353.
  • [18] Topkaya S.N., Ozyurt V.H., Cetin A.E., Otles S., Nitration of Tyrosine and Its Effect on DNA Hybridization, Biosens. Bioelectron., 102 (2018) 464-469.
  • [19] Istanbullu H., Bayraktar G., Ozturk I., Coban G., Saylam M., Design, synthesis and bioactivity studies of novel triazolopyrimidinone compounds, J. Res. Pharm., 26(1) 2022.
  • [20] Deng P., Xu Z., Kuang Y., Electrochemically reduced graphene oxide modified acetylene black paste electrode for the sensitive determination of bisphenol A, J. Electroanal. Chem., 707 (2013). 7-14.
  • [21] Brunetti B., About estimating the limit of detection by the signal to noise approach, Pharm. Anal. Acta., 6(4) (2014) e2014007.
  • [22] Armbruster D.A., Pry T., Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev., 29(Suppl 1) (2008) S49-52.
  • [23] Buleandra M., Popa D.E., David I.G., Bacalum E., David V., Ciucu A.A., Electrochemical behavior study of some selected phenylurea herbicides at activated pencil graphite electrode. Electrooxidation of linuron and monolinuron, Microchem. J., 147 (2019) 1109-1116.
  • [24] Wang X., Lim H.J., Son A., Characterization of denaturation and renaturation of DNA for DNA hybridization, Environ. Health. Toxicol., 29 (2014) e2014007.
  • [25] Sirajuddin M., Ali S., Badshah A., Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry, J. Photochem. Photobiol. B, Biol., 124 (2013) 1-19.
  • [26] Ramotowska S., Ciesielska A., Makowski M., What can electrochemical methods offer in determining DNA–drug interactions?, Molecules., 26(11) (2021) 3478.

Details

Primary Language English
Subjects Pharmaceutical Analytical Chemistry
Journal Section Natural Sciences
Authors

Arif Engin ÇETİN 0000-0002-0788-8108

Publication Date December 28, 2023
Submission Date August 17, 2023
Acceptance Date October 28, 2023
Published in Issue Year 2023Volume: 44 Issue: 4

Cite

APA ÇETİN, A. E. (2023). A Novel Triazolopyrimidinone Derivative: A Portable Electrochemical Approach to Investigate DNA Interactions. Cumhuriyet Science Journal, 44(4), 617-624. https://doi.org/10.17776/csj.1344756