Research Article
BibTex RIS Cite
Year 2023, Volume: 44 Issue: 4, 645 - 649, 28.12.2023
https://doi.org/10.17776/csj.1340869

Abstract

Supporting Institution

TÜBİTAK

Project Number

1919B012109251

Thanks

TÜBİTAK'a desteklerinden dolayı teşekkürlerimizi sunarız

References

  • [1] H. J. Forman, Use and abuse of exogenous H2O2 in studies of signal transduction, Free Radic. Biol. Med., vol. 42(7) (2007) 926–932.
  • [2] Karabulut H., Şükrü Gülay M., Serbest Radikaller., MAKÜ Sag. Bil. Enst. Derg., 4(41) (2016) 50–59.
  • [3] Kuraoka B., Robins P., Masutani C., Hanaoka F., Gasparutto D., Harbiyeli J., Ahşap RD., Lindahl T., Oxygen free radical damage to DNA. Translesion synthesis by human DNA polymerase eta and resistance to exonuclease action at cyclopurine deoxynucleoside residues., J. Biol. Chem., 276(52) (2001) 49283–49288.
  • [4] Devasagayam T. P. A., Boloor K. K., and Ramasarma T., Methods for estimating lipid peroxidation: an analysis of merits and demerits., Indian J. Biochem. Biophys., 40(5) (2003) 300–308.
  • [5] Bengal W., Free Radicals and Their Role in Different Clinical Conditions : An Overview, 1(3) (2010) 185–192.
  • [6] Devasagayam T. P. A., Tilak J. C., Boloor K. K., Sane K. S., Ghaskadbi S. S., and Lele R. D., Free radicals and antioxidants in human health: current status and future prospects., J. Assoc. Physicians India, 52(10) (2004) 794–804.
  • [7] Gandhi S. and Abramov A. Y., Mechanism of Oxidative Stress in Neurodegeneration, Oxid. Med. Cell. Longev., 2012 (2012) 428010. doi: 10.1155/2012/428010.
  • [8] Coyle J. T. and Puttfarcken P., Oxidative Stress, Glutamate, and Neurodegenerative Disorders, Science., 262(5134) (1993)n689–695.
  • [9] Shirley R., Ord E. N. J., and Work L. M., Oxidative Stress and the Use of Antioxidants in Stroke., Antioxidants, 3(3) (2014) 472–501.
  • [10] Dias V., Junn E., and Mouradian M. M., The role of oxidative stress in Parkinson’s disease., J. Parkinsons. Dis., 3(4) (2013) 461–491.
  • [11] Gella A. and Durany N., Oxidative stress in Alzheimer disease., Cell Adh. Migr., 3(1) (2009) 88–93.
  • [12] Jelinek M., Jurajda M., and Duris K., Oxidative Stress in the Brain: Basic Concepts and Treatment Strategies in Stroke., Antioxidants, vol. 10(12) (2021) 1886.
  • [13] Knapp L. T. and Klann E., Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory?, J. Neurosci. Res., 70(1) (2002) 1–7.
  • [14] Zhuo M., Small S. A., Kandel E. R., and Hawkins R. D., Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus., Science, 260(5116) 1946–1950.
  • [15] Rodrigo R., Fernández-Gajardo R., Gutierrez R. , Matamala J.M. , Carrasco R., Miranda-Merchak A., Feuerhake W., Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities., CNS Neurol. Disord. Drug Targets, 12(5) (2013) 698–714.
  • [16] Bøgesø K. P., Christensen A. V, Hyttel J., and Liljefors T., 3-Phenyl-1-indanamines. Potential antidepressant activity and potent inhibition of dopamine, norepinephrine, and serotonin uptake., J. Med. Chem., 28(12) (1985) 1817–1828.
  • [17] Hyttel J. and Larsen J. J., Neurochemical profile of Lu 19-005, a potent inhibitor of uptake of dopamine, noradrenaline, and serotonin., J. Neurochem., 44(5) (1985) 1615–1622.
  • [18] Hunsberger J., Austin D. R., Henter I. D., and Chen G., The neurotrophic and neuroprotective effects of psychotropic agents., Dialogues Clin. Neurosci., 11(3) (2009) 333–348.
  • [19] Young L. T., Neuroprotective effects of antidepressant and mood stabilizing drugs., Journal of psychiatry & neuroscience : JPN, 27(1) (2002) 8–9.
  • [20] Cho Y. S., Yen C., Shim J. S., Kang D. H., and Kang S. W., Antidepressant indatraline induces autophagy and inhibits restenosis via suppression of mTOR / S6 kinase signaling pathway, Nat. Publ. Gr., 6(5) (2016) 1–9.
  • [21] Kruger N. J., The Bradford Method for Protein Quantitation BT - The Protein Protocols Handbook, Ed. Totowa, NJ: Humana Press, (2002)15–21.
  • [22] Erel O., A novel automated method to measure total antioxidant response against potent free radical reactions, Clin. Biochem., 37(2) (2004) 112–119.
  • [23] Erel O., A new automated colorimetric method for measuring total oxidant status, Clin. Biochem., 38(12) (2005) 1103–1111.
  • [24] Ergül M. and Taşkiran A. Ş., Thiamine protects glioblastoma cells against glutamate toxicity by suppressing oxidative/endoplasmic reticulum stress, Chem. Pharm. Bull., 69(9) (2021) 832–839.
  • [25] Armstrong R. W. and Wu C. C., Lattice Misorientation and Displaced Volume for Microhardness Indentations in MgO Crystals, J. Am. Ceram. Soc., 61(3–4) (1978) 102–106.
  • [26] Rao A. V and Balachandran B., Role of oxidative stress and antioxidants in neurodegenerative diseases., Nutr. Neurosci., 5(5) (2002) 291–309.
  • [27] Niedzielska E., Smaga I., Gawlik M., Moniczewski A., Stankowicz P., Pera J., Filip M., Oxidative Stress in Neurodegenerative Diseases., Mol. Neurobiol., 53(6) (2016) 4094–4125.
  • [28] Li J., O W., Li W., Jiang Z.-G., and Ghanbari H. A., Oxidative stress and neurodegenerative disorders., Int. J. Mol. Sci., 14(12) (2013) 24438–24475.
  • [29] Maher P. and Davis J. B., The role of monoamine metabolism in oxidative glutamate toxicity., J. Neurosci. Off. J. Soc. Neurosci., 16(20) (1996) 6394–6401.
  • [30] Nibuya M., Morinobu S., and Duman R. S., Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments., J. Neurosci. Off. J. Soc. Neurosci., 15(11) (1995) 7539–7547.
  • [31] Lindén A. M., Väisänen J., Lakso M., Nawa H., Wong G., and Castrén E., Expression of neurotrophins BDNF and NT-3, and their receptors in rat brain after administration of antipsychotic and psychotrophic agents., J. Mol. Neurosci., 14(1–2) (2000) 27–37.
  • [32] Hacısüleyman L., Saraç B., and Joha Z., Analgesic Effects of Vilazodone, Indatraline, and Talsupram in a Rat Model of Neuropathic Pain., Turkish J. Pharm. Sci., 19(3) (2021) 336–342.
  • [33] Abdel-Salam O. M. E., Morsy S. M. Y., and Sleem A. A., The effect of different antidepressant drugs on oxidative stress after lipopolysaccharide administration in mice., EXCLI J., 10 (2011) 290–302.
  • [34] Severcan S. M., Severcan C., Tazehkand M. N., and Oz Z. S., Evaluation of O xidant- A ntioxidant S tatus of F luvoxamine on H uman L ymphocyte C ell C ulture, 8(1) (2021) 79–83.

Investigation of the Effect of Indatraline on Oxidative Damage Induced by Hydrogen Peroxide in C6 Glioma Cell Line

Year 2023, Volume: 44 Issue: 4, 645 - 649, 28.12.2023
https://doi.org/10.17776/csj.1340869

Abstract

Oxidative stress is defined as an imbalance between the generation of reactive oxygen species (ROS) and their scavenging. Indatralin, which has serotonin reuptake inhibitory activity, has not yet been studied for its ability to prevent oxidative damage. Our research's objective was to find out how indatraline defends against oxidative damage. C6 cells were used in the study and four different cell groups were created. The control group received no therapy at all. For 24 hours, cells in the H2O2 group were exposed to 0.5 mM H2O2. The indatraline group received indatraline treatments for 24 hours at various doses (0.5, 1, 2.5, 5 and 10 μM). For one hour, indatraline was administered to the indatraline + H2O2 group at various concentrations (0.5, 1, 2.5, 5 and 10 μM) before the group was subjected to 0.5 mM H2O2 for 24 hours. Following the occurrence of oxidative damage, total antioxidant status (TAS) and total oxidant status (TOS) levels were determined. Cell viability was also evaluated using the XTT assay. As a result, after hydrogen peroxide-induced oxidative damage, indatraline at doses of 10, 5, and 2.5 μM showed a protective effect by significantly enhanced cell survival in C6 cells(p < 0.001). Additionally, indatraline boosted the lowered TAS level while decreasing the elevated TOS levels following hydrogen peroxide-induced oxidative damage (p<0.001).

Project Number

1919B012109251

References

  • [1] H. J. Forman, Use and abuse of exogenous H2O2 in studies of signal transduction, Free Radic. Biol. Med., vol. 42(7) (2007) 926–932.
  • [2] Karabulut H., Şükrü Gülay M., Serbest Radikaller., MAKÜ Sag. Bil. Enst. Derg., 4(41) (2016) 50–59.
  • [3] Kuraoka B., Robins P., Masutani C., Hanaoka F., Gasparutto D., Harbiyeli J., Ahşap RD., Lindahl T., Oxygen free radical damage to DNA. Translesion synthesis by human DNA polymerase eta and resistance to exonuclease action at cyclopurine deoxynucleoside residues., J. Biol. Chem., 276(52) (2001) 49283–49288.
  • [4] Devasagayam T. P. A., Boloor K. K., and Ramasarma T., Methods for estimating lipid peroxidation: an analysis of merits and demerits., Indian J. Biochem. Biophys., 40(5) (2003) 300–308.
  • [5] Bengal W., Free Radicals and Their Role in Different Clinical Conditions : An Overview, 1(3) (2010) 185–192.
  • [6] Devasagayam T. P. A., Tilak J. C., Boloor K. K., Sane K. S., Ghaskadbi S. S., and Lele R. D., Free radicals and antioxidants in human health: current status and future prospects., J. Assoc. Physicians India, 52(10) (2004) 794–804.
  • [7] Gandhi S. and Abramov A. Y., Mechanism of Oxidative Stress in Neurodegeneration, Oxid. Med. Cell. Longev., 2012 (2012) 428010. doi: 10.1155/2012/428010.
  • [8] Coyle J. T. and Puttfarcken P., Oxidative Stress, Glutamate, and Neurodegenerative Disorders, Science., 262(5134) (1993)n689–695.
  • [9] Shirley R., Ord E. N. J., and Work L. M., Oxidative Stress and the Use of Antioxidants in Stroke., Antioxidants, 3(3) (2014) 472–501.
  • [10] Dias V., Junn E., and Mouradian M. M., The role of oxidative stress in Parkinson’s disease., J. Parkinsons. Dis., 3(4) (2013) 461–491.
  • [11] Gella A. and Durany N., Oxidative stress in Alzheimer disease., Cell Adh. Migr., 3(1) (2009) 88–93.
  • [12] Jelinek M., Jurajda M., and Duris K., Oxidative Stress in the Brain: Basic Concepts and Treatment Strategies in Stroke., Antioxidants, vol. 10(12) (2021) 1886.
  • [13] Knapp L. T. and Klann E., Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory?, J. Neurosci. Res., 70(1) (2002) 1–7.
  • [14] Zhuo M., Small S. A., Kandel E. R., and Hawkins R. D., Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus., Science, 260(5116) 1946–1950.
  • [15] Rodrigo R., Fernández-Gajardo R., Gutierrez R. , Matamala J.M. , Carrasco R., Miranda-Merchak A., Feuerhake W., Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities., CNS Neurol. Disord. Drug Targets, 12(5) (2013) 698–714.
  • [16] Bøgesø K. P., Christensen A. V, Hyttel J., and Liljefors T., 3-Phenyl-1-indanamines. Potential antidepressant activity and potent inhibition of dopamine, norepinephrine, and serotonin uptake., J. Med. Chem., 28(12) (1985) 1817–1828.
  • [17] Hyttel J. and Larsen J. J., Neurochemical profile of Lu 19-005, a potent inhibitor of uptake of dopamine, noradrenaline, and serotonin., J. Neurochem., 44(5) (1985) 1615–1622.
  • [18] Hunsberger J., Austin D. R., Henter I. D., and Chen G., The neurotrophic and neuroprotective effects of psychotropic agents., Dialogues Clin. Neurosci., 11(3) (2009) 333–348.
  • [19] Young L. T., Neuroprotective effects of antidepressant and mood stabilizing drugs., Journal of psychiatry & neuroscience : JPN, 27(1) (2002) 8–9.
  • [20] Cho Y. S., Yen C., Shim J. S., Kang D. H., and Kang S. W., Antidepressant indatraline induces autophagy and inhibits restenosis via suppression of mTOR / S6 kinase signaling pathway, Nat. Publ. Gr., 6(5) (2016) 1–9.
  • [21] Kruger N. J., The Bradford Method for Protein Quantitation BT - The Protein Protocols Handbook, Ed. Totowa, NJ: Humana Press, (2002)15–21.
  • [22] Erel O., A novel automated method to measure total antioxidant response against potent free radical reactions, Clin. Biochem., 37(2) (2004) 112–119.
  • [23] Erel O., A new automated colorimetric method for measuring total oxidant status, Clin. Biochem., 38(12) (2005) 1103–1111.
  • [24] Ergül M. and Taşkiran A. Ş., Thiamine protects glioblastoma cells against glutamate toxicity by suppressing oxidative/endoplasmic reticulum stress, Chem. Pharm. Bull., 69(9) (2021) 832–839.
  • [25] Armstrong R. W. and Wu C. C., Lattice Misorientation and Displaced Volume for Microhardness Indentations in MgO Crystals, J. Am. Ceram. Soc., 61(3–4) (1978) 102–106.
  • [26] Rao A. V and Balachandran B., Role of oxidative stress and antioxidants in neurodegenerative diseases., Nutr. Neurosci., 5(5) (2002) 291–309.
  • [27] Niedzielska E., Smaga I., Gawlik M., Moniczewski A., Stankowicz P., Pera J., Filip M., Oxidative Stress in Neurodegenerative Diseases., Mol. Neurobiol., 53(6) (2016) 4094–4125.
  • [28] Li J., O W., Li W., Jiang Z.-G., and Ghanbari H. A., Oxidative stress and neurodegenerative disorders., Int. J. Mol. Sci., 14(12) (2013) 24438–24475.
  • [29] Maher P. and Davis J. B., The role of monoamine metabolism in oxidative glutamate toxicity., J. Neurosci. Off. J. Soc. Neurosci., 16(20) (1996) 6394–6401.
  • [30] Nibuya M., Morinobu S., and Duman R. S., Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments., J. Neurosci. Off. J. Soc. Neurosci., 15(11) (1995) 7539–7547.
  • [31] Lindén A. M., Väisänen J., Lakso M., Nawa H., Wong G., and Castrén E., Expression of neurotrophins BDNF and NT-3, and their receptors in rat brain after administration of antipsychotic and psychotrophic agents., J. Mol. Neurosci., 14(1–2) (2000) 27–37.
  • [32] Hacısüleyman L., Saraç B., and Joha Z., Analgesic Effects of Vilazodone, Indatraline, and Talsupram in a Rat Model of Neuropathic Pain., Turkish J. Pharm. Sci., 19(3) (2021) 336–342.
  • [33] Abdel-Salam O. M. E., Morsy S. M. Y., and Sleem A. A., The effect of different antidepressant drugs on oxidative stress after lipopolysaccharide administration in mice., EXCLI J., 10 (2011) 290–302.
  • [34] Severcan S. M., Severcan C., Tazehkand M. N., and Oz Z. S., Evaluation of O xidant- A ntioxidant S tatus of F luvoxamine on H uman L ymphocyte C ell C ulture, 8(1) (2021) 79–83.
There are 34 citations in total.

Details

Primary Language English
Subjects Toxicology
Journal Section Natural Sciences
Authors

Fatih Yulak 0000-0003-3708-6752

Bünyamin Üngür 0009-0003-7635-6820

Project Number 1919B012109251
Publication Date December 28, 2023
Submission Date August 10, 2023
Acceptance Date December 12, 2023
Published in Issue Year 2023Volume: 44 Issue: 4

Cite

APA Yulak, F., & Üngür, B. (2023). Investigation of the Effect of Indatraline on Oxidative Damage Induced by Hydrogen Peroxide in C6 Glioma Cell Line. Cumhuriyet Science Journal, 44(4), 645-649. https://doi.org/10.17776/csj.1340869