Research Article
BibTex RIS Cite
Year 2023, Volume: 44 Issue: 2, 268 - 275, 30.06.2023
https://doi.org/10.17776/csj.1166108

Abstract

References

  • [1] Keser M., Gummadov N., Akin B., Belen S., Mert Z., Taner S., Topal A., Yazar S., Morgounov A., Sharma R.C., Ozdemir F., Genetic Gains in Wheat in Turkey: Winter Wheat for Dryland Conditions, Crop J., 5(6) (2017) 533-540.
  • [2] Toklu F., Baloch F.S., Karaköy T., Özkan H., Effects of Different Priming Applications on Seed Germination and Some Agromorphological Characteristics of Bread Wheat (Triticum aestivum L.), Turk. J. Agric. For., 39(6) (2015) 1005-1013.
  • [3] Gajewska E., Głowacki R., Mazur J., Skłodowska M. Differential Response of Wheat Roots to Cu, Ni and Cd Treatment: Oxidative Stress and Defense Reactions, Plant Growth Regul., 71 (1) (2013) 13-20.
  • [4] Kumar V., Pandita S., Sidhu G.P.S., Sharma A., Khanna K., Kaur P., Bali A.S., Setia R., Copper Bioavailability, Uptake, Toxicity and Tolerance in Plants: A Comprehensive Review, Chemosphere, 262 (2021) 127810.
  • [5] Mir A.R., Pichtel J., Hayat S., Copper: Uptake, Toxicity and Tolerance in Plants and Management of Cu-Contaminated Soil, BioMetals, 34(4) (2021) 737-759.
  • [6] Zeng Q., Ling Q., Wu J., Yang Z., Liu R., Qi Y., Excess Copper-Induced Changes in Antioxidative Enzyme Activity, Mineral Nutrient Uptake and Translocation in Sugarcane Seedlings, Bull. Environ. Contam. Toxicol., 103 (6) (2019) 834-840.
  • [7] Panagos P., Ballabio C., Lugato E., Jones A., Borrelli P., Scarpa S., Orgiazzi A., Montanarella L., Potential Sources of Anthropogenic Copper Inputs to European Agricultural Soils, Sustainability, 10(7) (2018) 2380.
  • [8] Kalefetoğlu Macar T., Macar O., Yalçın E., Çavuşoğlu K., Resveratrol Ameliorates the Physiological, Biochemical, Cytogenetic, and Anatomical Toxicities Induced by Copper (II) Chloride Exposure in Allium cepa L., Environ. Sci. Pollut. Res., 27(1) (2020) 657-667.
  • [9] Tleuova A.B., Wielogorska E., Talluri V.P., Štěpánek F., Elliott C.T., Grigoriev D.O., Recent Advances and Remaining Barriers to Producing Novel Formulations of Fungicides for Safe and Sustainable Agriculture, J. Control. Release, 326 (2020) 468-481.
  • [10] Mohsin S.M., Hasanuzzaman M., Parvin K., Fujita M., Pretreatment of Wheat (Triticum aestivum L.) Seedlings With 2, 4-D Improves Tolerance to Salinity-Induced Oxidative Stress and Methylglyoxal Toxicity by Modulating Ion Homeostasis, Antioxidant Defenses, and Glyoxalase Systems, Plant Physiol. Biochem., 152 (2020) 221-231.
  • [11] Uçkun M., Özmen M., Evaluating Multiple Biochemical Markers in Xenopus laevis Tadpoles Exposed to The Pesticides Thiacloprid and Trifloxystrobin in Single and Mixed Forms, Environ. Toxicol. Chem., 40(10) (2021) 2846-2860.
  • [12] Mohsin S.M., Hasanuzzaman M., Parvin K., Hossain S., Fujita M., Protective Role of Tebuconazole and Trifloxystrobin in Wheat (Triticum aestivum L.) under Cadmium Stress Via Enhancement of Antioxidant Defense and Glyoxalase Systems, Physiol. Mol. Biol. Plants, 27(5) (2021) 1043-1057.
  • [13] Lichtenthaler H.K., Chlorophylls and Carotenoids: Pigments of Photosynthetic Membranes, Methods Enzymol., 148 (1987) 350-382.
  • [14] Mancinelli A.L., Yang C.P.H., Lindquist P., Anderson O.R., Rabino I., Photocontrol of Anthocyanin Synthesis: III. The Action of Streptomycin on The Synthesis of Chlorophyll and Anthocyanin, Plant Physiol., 55(2) (1975) 251-257.
  • [15] Ohkawa H., Ohishi N., Yagi K., Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction, Anal. Biochem., 95 (2) (1979) 351-358.
  • [16] Bates L.S., Waldren R.P., Teare I.D., Rapid Determination of Free Proline for Water-Stress Studies, Plant Soil, 39(1) (1973) 205-207.
  • [17] Weimberg R., Solute Adjustments in Leaves of Two Species of Wheat at Two Different Stages of Growth in Response to Salinity, Physiol. Plant., 70(3) (1987) 381-388.
  • [18] Bradford M.M., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 72(1-2) (1976) 248-254.
  • [19] Beyer W.F., Fridovich I., Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Conditions. Anal. Biochem., 161(2) (1987) 559-566.
  • [20] Bergmeyer H.U., Section C: Methods for Determination of Enzyme Activity. In: Bergmeyer H.U., (Ed.). Methods of enzymatic analysis. 2nd ed. Vol II. New York: Academic Press, (1974) 685-690.
  • [21] Sgherri C.L.M, Loggini B., Puliga S., Navari-Izzo F., Antioxidant System in Sporobolus stapfianus: Changes in Response to Desiccation and Rehydration, Phytochem., 35(3) (1994) 561-565.
  • [22] Singh D., Nath K., Sharma Y.K., Response of Wheat Seed Germination and Seedling Growth under Copper Stress, J. Environ. Biol., 28(2) (2007) 409-414.
  • [23] Atabayeva S., Nurmahanova A., Asrandina S., Alybayeva R., Meldebekova A., Ablaikhanova N., Effect of Copper on Physiological and Biochemical Peculiarities of Wheat (Triticum aestivum L.) Varieties, Pak. J. Bot., 49(6) (2017) 2189-2196.
  • [24] Lyoshyna L., Tarasyuk O., Bulko O., Rogalsky S., Kamenieva T., Kuchuk M., Effect of Polymeric Biocide Polyhexamethylene Guanidine Hydrochloride on Morpho-Physiological and Biochemical Parameters of Wheat Seedlings under Copper Stress, Agric. Sci. Pract., 7 (1) (2020) 49-58.
  • [25] Takahashi N., Sunohara Y., Fujiwara M., Matsumoto H., Improved Tolerance to Transplanting Injury and Chilling Stress in Rice Seedlings Treated with Orysastrobin, Plant Physiol. Biochem., 113 (2017) 161-167.
  • [26] Zong X., Zhang J., Zhu J., Zhang L., Jiang L., Yin Y., Guo H., Effects of Polystyrene Microplastic on Uptake and Toxicity of Copper and Cadmium in Hydroponic Wheat Seedlings (Triticum aestivum L.), Ecotoxicol. Environ. Saf., 217 (2021) 112217.
  • [27] Banerjee A., Roychoudhury A., Oxylipins and Strobilurins as Protective Chemical Agents to Generate Abiotic Stress Tolerance in Plants. In: Roychoudhury A., Tripathi D.K., (Eds). Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. Croydon: Wiley Blackwell, (2020) 483-490.
  • [28] Shoeva O.Y., Khlestkina E.K., Anthocyanins Participate in the Protection of Wheat Seedlings against Cadmium Stress, Cereal Res. Commun., 46(2) (2018) 242-252.
  • [29] Tereshchenko O.Y., Gordeeva E.I., Arbuzova V.S., Khlestkina E.K., Anthocyanin Pigmentation in Triticum aestivum L.: Genetic Basis and Role under Abiotic Stress Conditions, J. Stress Physiol. Biochem., 8 (3) (2012) 16.
  • [30] Yetişsin F., Kurt F., Gallic Acid (GA) Alleviating Copper (Cu) Toxicity in Maize (Zea mays L.) Seedlings, Int. J. Phytoremediation, 22(4) (2020) 420-426.
  • [31] Xu Y., Yu W., Ma Q., Zhou H., Jiang C., Toxicity of Sulfadiazine and Copper and Their Interaction to Wheat (Triticum aestivum L.) Seedlings, Ecotoxicol. Environ. Saf., 142 (2017) 250-256.
  • [32] Hameed A., Hameed A., Ahmad M., Farooq T., Alleviation of Cadmium Toxicity by Mercapto-Triazole Priming in Wheat, Arch. Agron. Soil Sci., 66(11) (2020) 1467-1480.
  • [33] Zhang Y.J., Zhang X., Chen C.J., Zhou M.G., Wang H.C., Effects of Fungicides JS399-19, Azoxystrobin, Tebuconazloe, and Carbendazim on The Physiological and Biochemical Indices and Grain Yield of Winter Wheat, Pestic. Biochem. Phys., 98(2) (2010) 151-157.
  • [34] Thounaojam T.C., Panda P., Mazumdar P., Kumar D., Sharma G.D., Sahoo L., Sanjib P., Excess Copper Induced Oxidative Stress and Response of Antioxidants in Rice, Plant Physiol. Biochem., 53 (2012) 33-39.
  • [35] Mizutani A., Miki N., Yukioka H., Tamura H., Masuko M., A Possible Mechanism of Control of Rice Blast Disease by a Novel Alkoxyiminoacetamide Fungicide, SSF126, Phytopathology, 86(3) (1996) 295-300.
  • [36] Platonova N., Belous O., Relationship between the Activity of Guaiacol Peroxidase and the Content of Photosynthetic Pigments in Tea Leaves, Slovak J. Food Sci., 14 (2020), 1020-1026.
  • [37] Gupta N.K., Agarwal S., Agarwal V.P., Nathawat N.S., Gupta S., Singh G., Effect of Short-Term Heat Stress on Growth, Physiology and Antioxidative Defence System in Wheat Seedlings, Acta Physiol. Plant., 35(6) (2013) 1837-1842.
  • [38] Dı́az J., Bernal A., Pomar F., Merino F., Induction of Shikimate Dehydrogenase and Peroxidase in Pepper (Capsicum annuum L.) Seedlings in Response to Copper Stress and Its Relation to Lignification, Plant Sci., 161(1) (2001) 179-188.
  • [39] Drążkiewicz M., Skórzyńska-Polit E., Krupa Z., Response of the Ascorbate–Glutathione Cycle to Excess Copper in Arabidopsis thaliana (L.), Plant Sci., 164(2) (2003) 195-202.
  • [40] Wu Y.X., von Tiedemann A., Physiological Effects of Azoxystrobin and Epoxiconazole on Senescence and the Oxidative Status of Wheat, Pestic. Biochem. Phys., 71(1) (2001) 1-10.

Trifloxystrobin Pretreatment Alleviates Excessive Copper Stress in Wheat (Triticum aestivum L.)

Year 2023, Volume: 44 Issue: 2, 268 - 275, 30.06.2023
https://doi.org/10.17776/csj.1166108

Abstract

Protective role of Trifloxystrobin pretreatment against excessive copper-related abiotic stress in Triticum aestivum L. was determined in two Turkish wheat cultivars, Sönmez and Gerek 79. Ten-day-old seedlings were pretreated with 20 µM and 80 µM Trifloxystrobin. A group of seedlings was harvested without exposure to Trifloxystrobin as a control. Two days after, seedlings were treated with copper(II) chloride. Seedlings were harvested on the 20th day after sowing. The growth level of the groups was evaluated by measuring the length, fresh weight and shoot dry weight of shoots. Chlorophyll a + b, carotenoid and anthocyanin contents as well as proline levels were assessed. Lipid peroxidation and total activities of superoxide dismutase, peroxidase and glutathione reductase were analyzed to predict the oxidative stress levels. Both cultivars exhibited similar responses to the treatments. Trifloxystrobin doses did not cause damage on plants when applied alone. Seedlings subjected to excessive doses of copper showed significant reductions in growth parameters, as well as chlorophyll and carotenoid pigments. Conversely, copper caused a remarkable increase in anthocyanin, proline and malondialdehyde accumulation. Superoxide dismutase and peroxidase activities increased, while glutathione reductase activity decreased in copper-stressed plants. Trifloxystrobin pretreatment strengthens the antioxidant defense system. All parameters were positively affected by Trifloxystrobin pretreatment. As the dose of Trifloxystrobin increased, the severity of stress decreased in both genotypes. Trifloxystrobin pretreatment is a promising method for reducing copper-induced damage in T. aestivum.

References

  • [1] Keser M., Gummadov N., Akin B., Belen S., Mert Z., Taner S., Topal A., Yazar S., Morgounov A., Sharma R.C., Ozdemir F., Genetic Gains in Wheat in Turkey: Winter Wheat for Dryland Conditions, Crop J., 5(6) (2017) 533-540.
  • [2] Toklu F., Baloch F.S., Karaköy T., Özkan H., Effects of Different Priming Applications on Seed Germination and Some Agromorphological Characteristics of Bread Wheat (Triticum aestivum L.), Turk. J. Agric. For., 39(6) (2015) 1005-1013.
  • [3] Gajewska E., Głowacki R., Mazur J., Skłodowska M. Differential Response of Wheat Roots to Cu, Ni and Cd Treatment: Oxidative Stress and Defense Reactions, Plant Growth Regul., 71 (1) (2013) 13-20.
  • [4] Kumar V., Pandita S., Sidhu G.P.S., Sharma A., Khanna K., Kaur P., Bali A.S., Setia R., Copper Bioavailability, Uptake, Toxicity and Tolerance in Plants: A Comprehensive Review, Chemosphere, 262 (2021) 127810.
  • [5] Mir A.R., Pichtel J., Hayat S., Copper: Uptake, Toxicity and Tolerance in Plants and Management of Cu-Contaminated Soil, BioMetals, 34(4) (2021) 737-759.
  • [6] Zeng Q., Ling Q., Wu J., Yang Z., Liu R., Qi Y., Excess Copper-Induced Changes in Antioxidative Enzyme Activity, Mineral Nutrient Uptake and Translocation in Sugarcane Seedlings, Bull. Environ. Contam. Toxicol., 103 (6) (2019) 834-840.
  • [7] Panagos P., Ballabio C., Lugato E., Jones A., Borrelli P., Scarpa S., Orgiazzi A., Montanarella L., Potential Sources of Anthropogenic Copper Inputs to European Agricultural Soils, Sustainability, 10(7) (2018) 2380.
  • [8] Kalefetoğlu Macar T., Macar O., Yalçın E., Çavuşoğlu K., Resveratrol Ameliorates the Physiological, Biochemical, Cytogenetic, and Anatomical Toxicities Induced by Copper (II) Chloride Exposure in Allium cepa L., Environ. Sci. Pollut. Res., 27(1) (2020) 657-667.
  • [9] Tleuova A.B., Wielogorska E., Talluri V.P., Štěpánek F., Elliott C.T., Grigoriev D.O., Recent Advances and Remaining Barriers to Producing Novel Formulations of Fungicides for Safe and Sustainable Agriculture, J. Control. Release, 326 (2020) 468-481.
  • [10] Mohsin S.M., Hasanuzzaman M., Parvin K., Fujita M., Pretreatment of Wheat (Triticum aestivum L.) Seedlings With 2, 4-D Improves Tolerance to Salinity-Induced Oxidative Stress and Methylglyoxal Toxicity by Modulating Ion Homeostasis, Antioxidant Defenses, and Glyoxalase Systems, Plant Physiol. Biochem., 152 (2020) 221-231.
  • [11] Uçkun M., Özmen M., Evaluating Multiple Biochemical Markers in Xenopus laevis Tadpoles Exposed to The Pesticides Thiacloprid and Trifloxystrobin in Single and Mixed Forms, Environ. Toxicol. Chem., 40(10) (2021) 2846-2860.
  • [12] Mohsin S.M., Hasanuzzaman M., Parvin K., Hossain S., Fujita M., Protective Role of Tebuconazole and Trifloxystrobin in Wheat (Triticum aestivum L.) under Cadmium Stress Via Enhancement of Antioxidant Defense and Glyoxalase Systems, Physiol. Mol. Biol. Plants, 27(5) (2021) 1043-1057.
  • [13] Lichtenthaler H.K., Chlorophylls and Carotenoids: Pigments of Photosynthetic Membranes, Methods Enzymol., 148 (1987) 350-382.
  • [14] Mancinelli A.L., Yang C.P.H., Lindquist P., Anderson O.R., Rabino I., Photocontrol of Anthocyanin Synthesis: III. The Action of Streptomycin on The Synthesis of Chlorophyll and Anthocyanin, Plant Physiol., 55(2) (1975) 251-257.
  • [15] Ohkawa H., Ohishi N., Yagi K., Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction, Anal. Biochem., 95 (2) (1979) 351-358.
  • [16] Bates L.S., Waldren R.P., Teare I.D., Rapid Determination of Free Proline for Water-Stress Studies, Plant Soil, 39(1) (1973) 205-207.
  • [17] Weimberg R., Solute Adjustments in Leaves of Two Species of Wheat at Two Different Stages of Growth in Response to Salinity, Physiol. Plant., 70(3) (1987) 381-388.
  • [18] Bradford M.M., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 72(1-2) (1976) 248-254.
  • [19] Beyer W.F., Fridovich I., Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Conditions. Anal. Biochem., 161(2) (1987) 559-566.
  • [20] Bergmeyer H.U., Section C: Methods for Determination of Enzyme Activity. In: Bergmeyer H.U., (Ed.). Methods of enzymatic analysis. 2nd ed. Vol II. New York: Academic Press, (1974) 685-690.
  • [21] Sgherri C.L.M, Loggini B., Puliga S., Navari-Izzo F., Antioxidant System in Sporobolus stapfianus: Changes in Response to Desiccation and Rehydration, Phytochem., 35(3) (1994) 561-565.
  • [22] Singh D., Nath K., Sharma Y.K., Response of Wheat Seed Germination and Seedling Growth under Copper Stress, J. Environ. Biol., 28(2) (2007) 409-414.
  • [23] Atabayeva S., Nurmahanova A., Asrandina S., Alybayeva R., Meldebekova A., Ablaikhanova N., Effect of Copper on Physiological and Biochemical Peculiarities of Wheat (Triticum aestivum L.) Varieties, Pak. J. Bot., 49(6) (2017) 2189-2196.
  • [24] Lyoshyna L., Tarasyuk O., Bulko O., Rogalsky S., Kamenieva T., Kuchuk M., Effect of Polymeric Biocide Polyhexamethylene Guanidine Hydrochloride on Morpho-Physiological and Biochemical Parameters of Wheat Seedlings under Copper Stress, Agric. Sci. Pract., 7 (1) (2020) 49-58.
  • [25] Takahashi N., Sunohara Y., Fujiwara M., Matsumoto H., Improved Tolerance to Transplanting Injury and Chilling Stress in Rice Seedlings Treated with Orysastrobin, Plant Physiol. Biochem., 113 (2017) 161-167.
  • [26] Zong X., Zhang J., Zhu J., Zhang L., Jiang L., Yin Y., Guo H., Effects of Polystyrene Microplastic on Uptake and Toxicity of Copper and Cadmium in Hydroponic Wheat Seedlings (Triticum aestivum L.), Ecotoxicol. Environ. Saf., 217 (2021) 112217.
  • [27] Banerjee A., Roychoudhury A., Oxylipins and Strobilurins as Protective Chemical Agents to Generate Abiotic Stress Tolerance in Plants. In: Roychoudhury A., Tripathi D.K., (Eds). Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. Croydon: Wiley Blackwell, (2020) 483-490.
  • [28] Shoeva O.Y., Khlestkina E.K., Anthocyanins Participate in the Protection of Wheat Seedlings against Cadmium Stress, Cereal Res. Commun., 46(2) (2018) 242-252.
  • [29] Tereshchenko O.Y., Gordeeva E.I., Arbuzova V.S., Khlestkina E.K., Anthocyanin Pigmentation in Triticum aestivum L.: Genetic Basis and Role under Abiotic Stress Conditions, J. Stress Physiol. Biochem., 8 (3) (2012) 16.
  • [30] Yetişsin F., Kurt F., Gallic Acid (GA) Alleviating Copper (Cu) Toxicity in Maize (Zea mays L.) Seedlings, Int. J. Phytoremediation, 22(4) (2020) 420-426.
  • [31] Xu Y., Yu W., Ma Q., Zhou H., Jiang C., Toxicity of Sulfadiazine and Copper and Their Interaction to Wheat (Triticum aestivum L.) Seedlings, Ecotoxicol. Environ. Saf., 142 (2017) 250-256.
  • [32] Hameed A., Hameed A., Ahmad M., Farooq T., Alleviation of Cadmium Toxicity by Mercapto-Triazole Priming in Wheat, Arch. Agron. Soil Sci., 66(11) (2020) 1467-1480.
  • [33] Zhang Y.J., Zhang X., Chen C.J., Zhou M.G., Wang H.C., Effects of Fungicides JS399-19, Azoxystrobin, Tebuconazloe, and Carbendazim on The Physiological and Biochemical Indices and Grain Yield of Winter Wheat, Pestic. Biochem. Phys., 98(2) (2010) 151-157.
  • [34] Thounaojam T.C., Panda P., Mazumdar P., Kumar D., Sharma G.D., Sahoo L., Sanjib P., Excess Copper Induced Oxidative Stress and Response of Antioxidants in Rice, Plant Physiol. Biochem., 53 (2012) 33-39.
  • [35] Mizutani A., Miki N., Yukioka H., Tamura H., Masuko M., A Possible Mechanism of Control of Rice Blast Disease by a Novel Alkoxyiminoacetamide Fungicide, SSF126, Phytopathology, 86(3) (1996) 295-300.
  • [36] Platonova N., Belous O., Relationship between the Activity of Guaiacol Peroxidase and the Content of Photosynthetic Pigments in Tea Leaves, Slovak J. Food Sci., 14 (2020), 1020-1026.
  • [37] Gupta N.K., Agarwal S., Agarwal V.P., Nathawat N.S., Gupta S., Singh G., Effect of Short-Term Heat Stress on Growth, Physiology and Antioxidative Defence System in Wheat Seedlings, Acta Physiol. Plant., 35(6) (2013) 1837-1842.
  • [38] Dı́az J., Bernal A., Pomar F., Merino F., Induction of Shikimate Dehydrogenase and Peroxidase in Pepper (Capsicum annuum L.) Seedlings in Response to Copper Stress and Its Relation to Lignification, Plant Sci., 161(1) (2001) 179-188.
  • [39] Drążkiewicz M., Skórzyńska-Polit E., Krupa Z., Response of the Ascorbate–Glutathione Cycle to Excess Copper in Arabidopsis thaliana (L.), Plant Sci., 164(2) (2003) 195-202.
  • [40] Wu Y.X., von Tiedemann A., Physiological Effects of Azoxystrobin and Epoxiconazole on Senescence and the Oxidative Status of Wheat, Pestic. Biochem. Phys., 71(1) (2001) 1-10.
There are 40 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Natural Sciences
Authors

Oksal Macar 0000-0002-5067-8712

Tuğçe Kalefetoğlu Macar 0000-0002-9946-8054

Tolga Karaköy 0000-0002-5428-1907

Publication Date June 30, 2023
Submission Date August 24, 2022
Acceptance Date May 21, 2023
Published in Issue Year 2023Volume: 44 Issue: 2

Cite

APA Macar, O., Kalefetoğlu Macar, T., & Karaköy, T. (2023). Trifloxystrobin Pretreatment Alleviates Excessive Copper Stress in Wheat (Triticum aestivum L.). Cumhuriyet Science Journal, 44(2), 268-275. https://doi.org/10.17776/csj.1166108