Research Article
BibTex RIS Cite
Year 2023, Volume: 44 Issue: 1, 148 - 159, 26.03.2023
https://doi.org/10.17776/csj.1173233

Abstract

References

  • [1] Suzuki T., A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008) 1861-1869.
  • [2] Suzuki T., A new type of fixed point theorem in metric spaces, Nonlinear Anal. Theory Methods Appl., 71 (2009) 5313-5317.
  • [3] Abbas M., Ali B., Vetro C., A Suzuki type fixed point theorem for a generalized multivalued mapping on partial hausdorff metric spaces, Topol. Appl., 160 (2013) 553-563.
  • [4] Abbas M., Iqbal H., Petruşel A., Fixed points for multivalued Suzuki type (Theta,R)-contraction mappings with applications, J. Funct. Spaces, 2019 (2019) 9565804 13.
  • [5] Chandra N., Arya M.C., Joshi M.C., A Suzuki type common fixed point theorem, Filomat, 31 (2017) 2951-2956.
  • [6] Ciric L., Abbas M., Rajoviç M., Ali B., Suzuki type fixed point theorems for generalized multivalued mappings on a set endowed with two b-metrics, Appl. Math. Comput., 219 (2012) 1712-1723.
  • [7] Özkan K., Gürdal U., The Fixed Point Theorem and Characterization of Bipolar Metric Completeness, Konuralp J. Math., 8 (2020) 137-143.
  • [8] Sedghi S., Shobkolaei N., Dosenovic T., Radenovic S., Suzuki type of common fixed point theorems in fuzzy metric spaces, Math. Slovaca, 68 (2018) 451-462.
  • [9] Gautam P., Kumar S., Verma S., Gulati S., On some w-Interpolative contractions of Suzuki type mappings in Quasi-partial b-metric space, J. Funct. Spaces, 2022 (2022) Article Id. 9158199, 12 Pages.
  • [10] Wangwe L., Kumar S., A common fixed point theorem for generalized F-Kannan Suzuki type mapping in TVS valued cone metric space with applications, J. Math., 2022 (2022) 6504663.
  • [11] Matthews S.G., Partial metric topology, in: Papers on General Topology and Applications, Flushing, NY, 1992, in: Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, (1994) 183-197.
  • [12] Abbas M., Ali B., Petruşel G., Fixed points of set-valued contractions in partial metric spaces endowed with a graph, Carpath. J. Math., 30 (2014) 129-137.
  • [13] Karapınar E., Generalizations of Caristi Kirk’s theorem on partial metric spaces, Fixed Point Theory and Appl., 2011 (1) (2011) Article number:4.
  • [14] Onsod W., Saleewong T., Kumam P., Fixed and periodic point results for generalized geraghty contractions in partial metric spaces with application, Thai J. Math., 18 (3) (2020) 1247–1260.
  • [15] Paesano D., Vetro P., Suzuki’s type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topol. Appl., 159 (3) (2012) 911–920.
  • [16] Paesano D., Vetro P., Fixed points and completeness on partial metric spaces, Miskolc Math. Notes, 16(1) (2015) 369–383.
  • [17] Romaguera S., A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory and Appl., 2010 (1) (2009) 493–298.
  • [18] Romaguera S., On Nadler’s fixed point theorem for partial metric spaces, Math. Sci. Appl. E-Notes, 1 (2013) 1–8.
  • [19] Shatanawi W., Samet B., Abbas M., Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Math. Comput. Model., 55 (3-4) (2012) 680–687.
  • [20] Abdeljawad T., Karapınar E., Taş K., Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett., 24 (2011) 1900-1904.

Common Fixed Point Results for Suzuki Type Contractions on Partial Metric Spaces with an Application

Year 2023, Volume: 44 Issue: 1, 148 - 159, 26.03.2023
https://doi.org/10.17776/csj.1173233

Abstract

In this article, we prove a common fixed point theorem for Suzuki type contractions on complete partial metric spaces. Moreover, we state some corollaries related to Suzuki type common fixed point theorem. And we give an example where we apply our main theorem on complete partial metric spaces. Finally, to show usability of our results, we give its an application showing existence and uniqueness of a common solution for a class of functional equations in dynamic programming.

References

  • [1] Suzuki T., A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008) 1861-1869.
  • [2] Suzuki T., A new type of fixed point theorem in metric spaces, Nonlinear Anal. Theory Methods Appl., 71 (2009) 5313-5317.
  • [3] Abbas M., Ali B., Vetro C., A Suzuki type fixed point theorem for a generalized multivalued mapping on partial hausdorff metric spaces, Topol. Appl., 160 (2013) 553-563.
  • [4] Abbas M., Iqbal H., Petruşel A., Fixed points for multivalued Suzuki type (Theta,R)-contraction mappings with applications, J. Funct. Spaces, 2019 (2019) 9565804 13.
  • [5] Chandra N., Arya M.C., Joshi M.C., A Suzuki type common fixed point theorem, Filomat, 31 (2017) 2951-2956.
  • [6] Ciric L., Abbas M., Rajoviç M., Ali B., Suzuki type fixed point theorems for generalized multivalued mappings on a set endowed with two b-metrics, Appl. Math. Comput., 219 (2012) 1712-1723.
  • [7] Özkan K., Gürdal U., The Fixed Point Theorem and Characterization of Bipolar Metric Completeness, Konuralp J. Math., 8 (2020) 137-143.
  • [8] Sedghi S., Shobkolaei N., Dosenovic T., Radenovic S., Suzuki type of common fixed point theorems in fuzzy metric spaces, Math. Slovaca, 68 (2018) 451-462.
  • [9] Gautam P., Kumar S., Verma S., Gulati S., On some w-Interpolative contractions of Suzuki type mappings in Quasi-partial b-metric space, J. Funct. Spaces, 2022 (2022) Article Id. 9158199, 12 Pages.
  • [10] Wangwe L., Kumar S., A common fixed point theorem for generalized F-Kannan Suzuki type mapping in TVS valued cone metric space with applications, J. Math., 2022 (2022) 6504663.
  • [11] Matthews S.G., Partial metric topology, in: Papers on General Topology and Applications, Flushing, NY, 1992, in: Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, (1994) 183-197.
  • [12] Abbas M., Ali B., Petruşel G., Fixed points of set-valued contractions in partial metric spaces endowed with a graph, Carpath. J. Math., 30 (2014) 129-137.
  • [13] Karapınar E., Generalizations of Caristi Kirk’s theorem on partial metric spaces, Fixed Point Theory and Appl., 2011 (1) (2011) Article number:4.
  • [14] Onsod W., Saleewong T., Kumam P., Fixed and periodic point results for generalized geraghty contractions in partial metric spaces with application, Thai J. Math., 18 (3) (2020) 1247–1260.
  • [15] Paesano D., Vetro P., Suzuki’s type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topol. Appl., 159 (3) (2012) 911–920.
  • [16] Paesano D., Vetro P., Fixed points and completeness on partial metric spaces, Miskolc Math. Notes, 16(1) (2015) 369–383.
  • [17] Romaguera S., A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory and Appl., 2010 (1) (2009) 493–298.
  • [18] Romaguera S., On Nadler’s fixed point theorem for partial metric spaces, Math. Sci. Appl. E-Notes, 1 (2013) 1–8.
  • [19] Shatanawi W., Samet B., Abbas M., Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Math. Comput. Model., 55 (3-4) (2012) 680–687.
  • [20] Abdeljawad T., Karapınar E., Taş K., Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett., 24 (2011) 1900-1904.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Natural Sciences
Authors

Kübra Özkan 0000-0002-8014-1713

Publication Date March 26, 2023
Submission Date September 9, 2022
Acceptance Date January 24, 2023
Published in Issue Year 2023Volume: 44 Issue: 1

Cite

APA Özkan, K. (2023). Common Fixed Point Results for Suzuki Type Contractions on Partial Metric Spaces with an Application. Cumhuriyet Science Journal, 44(1), 148-159. https://doi.org/10.17776/csj.1173233