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Introduction 

In 2008, Suzuki [1] introduced a useful generalization 
of Banach fixed point theorem called as Suzuki fixed point 
theorem as follows: 

Let (X,d)  be a complete metric space and let T  be a 

self-mapping on X . We consider a nonincreasing function 
by 

 

  













2

5 - 1
1, 0 r ,

2

1 - r 5 - 1 1
(r) = , r ,

2 2

1 1
, r < 1.

1 + r 2

r

 
Assume that there exists r [0,1)  such that 

 
(r)d(x,Tx) d(x,y) d(Tx,Ty) rd(x,y)     

 
for all x,y X . Then, there exists a unique fixed point u  

of T .  Moreover, 
n

n
T =lim x u


 for all .x X  In view of this 

generalization, several authors generalized Suzuki’s fixed 
point theorem, see [2-9] and the references therein. In 
recently, Wangwe and Kumar [10] combined Kannan and 
Suzuki results and introduced a new fixed point theorem 
in TVS valued cone metric space.   

In 1994, Matthews introduced the concept of partial 
metric spaces [11]. They are seen as a part of the study of 
denotational semantics of dataflow networks and play an 
important role in the creation of models in the 
computational theory. So, many authors studied on 
partial metric spaces, and they gave different fixed point 

theorems on these type metric spaces, such as Kannan's, 
Caristi's, Nadler's and Suzuki's. For more details, the 
readers can refer to [12-19]. 

In this paper, we prove a common fixed point theorem 
for Suzuki type contractions on complete partial metric 
spaces. We also state some corollaries related to Suzuki 
type common fixed point theorem. We also give an 
example where we apply our main theorem on complete 
partial metric spaces. Finally, to show usability of our 
results, we give its an application showing existence and 
uniqueness of a common solution for a class of functional 
equations in dynamic programming 

 

Preliminaries 
 
We start by recalling a series of definitions of some 

fundamental notions related to partial metric spaces. In 

the following 


 stands for the set of all non-negative 

real numbers, i.e., = [0, )


 . 

Definition 1.  Let  X . A function p : X × X


  is 

called a partial metric, if it holds the following properties 

for all x, y, z X  

(p1)  x = y p(x, x) = p(x, y) = p(y, y) , 

(p2)  p(x, x) p(x, y) , 

(p3)  p(x, y) = p(y, x) , 

(p4)  p(x, y) p(x,z) + p(z, y) - p(z,z) .  

http://xxx.cumhuriyet.edu.tr/
https://orcid.org/0000-0002-8014-1713


Özkan / Cumhuriyet Sci. J., 44(1) (2023) 148-159 

149 

A pair (X,p)  is called partial metric space. Shortly, we 

write PMS for the partial metric space. From (p1)  and 

(p2) , we get that if p(x, y) = 0 , then x = y . But the 

opposite may not be true. If we define partial metric as 

 p(x, y) = max x,y  for all x, y


 , then the pair ( ),p  

is a PMS. This is a basic for PMS [11]. 

p  induces a 
0

T  topology p  on X  having the base 

{ }p(a, ) : a X, > 0B    , 

where  p(a,ε) = {b X : p(a,b) < p(a,a }B ) + ε   for all a X  

and ε > 0  [9]. 

Definition 2.  Let  (X,p)  be a PMS. 

(1) A sequence n  n(x )  in X  converges to a point x X  

if and only if 


n
n

p(x, x) = lim p(x, x ) . 

(2) A sequence n  n(x )  in X  is called a Cauchy sequence 

if there exists (and is finite)  


n m

n,m
lim p(x , x ) . 

(3) (X,p)  is called complete if every Cauchy sequence 

n  n(x )  in X  converges, with respect to p , to a point 

x X  such that 


n m
n,m

p(x, lim p(x) = , xx )  [11].   

Lemma 1. Let (X,p)  be a PMS and 
n  n(x )  be a sequence 

in X  Suppose that nx u  as n  in a PMS (X,p)  such 

that p(u,u) = 0 . Then 


n
n
lim p(x , y) = p(u, y)  for every 

y X  [20]. 

The function   
s

:p X X [0, )  given by 

s
p (x, y) = 2p(x, y) - p(x,x) - p(y, y)  is a metric on X  where 

p  is a partial metric on X   [11]. 

Lemma 2. Let (X,p)  be a PMS and 
n  n(x )  be a sequence 

in X  

( )1  The sequence n  n(x )  is a Cauchy sequence in (X,p)  

if and only if it is a Cauchy sequence in the metric space 
s(X,p ) . 

( )2 (X,p)  is complete if and only if the metric space s(X,p )  

is complete. Furthermore,  

s
n n n m

n n n
lim  p (x,x ) = 0 p(x,x) = lim p(x,x ) = lim  p(x ,x )
  

 [11]. 

 

Main Results  
 
Theorem 1.  Let (X,p)  be a complete PMS, T, S : X X  be two self-maps and a nonincreasing function 

 
 
  

1
: [0,1) ,1

2
 be defined by 

 

  













2

5 - 1
1, 0 r ,

2

1 - r 5 - 1 1
(r) = , r ,

2 2

1 1
, r < 1.

1 + r 2

r
 

If there exists 
1

r 0,
2

 
 
 

 such that 

  (r)min p(x, Tx),p(x, Sx) p(x, y)               (1) 

Implies 

  
 
 
 

1
max p(Sx, Sy),p(Tx, Ty), p(Sx, Ty) + p(Sy, Tx) rp(x, y),

2
  

for all x, y X , then T  and S  have a unique common fixed point. 

Proof. Firstly, we prove that if u  is a fixed point of T  (or S ), then it is also fixed point of S  (or T ). We suppose that u  

is a fixed point of T , that is, Tu = u . We want to show that Su u . Taking x u  and y = Tu  in (1), we get 
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 0 (r)min p(u, Tu),p(u, Su) p(u, Tu)    

implies 

 
           .

2 21
p(Su,u) max p(Su, STu),p(Tu, T u), p(Su, T u) + p(STu, Tu)

2

rp(u, Tu)





    

Hence, we have p(Su,u) rp(u,u) . From property (p2)of PMS, we get 

 

p(u,u) p(Su,u) rp(u,u).   

 
So, p(u,u) = 0 . Then we get Su = u . Similarly, the contrary can be shown easily. Therefore, it is enough to show that T  

has a fixed point to complete the proof. Putting y = Sx  in (1), we have 

 (r)min p(x, Tx),p(x, Sx) p(x, Sx)   

implies 

2 21
max p(Sx, S x),p(Tx, TSx), p(Sx, TSx) + p(S x, Tx) rp(x, Sx)

2


 
   

 
 

for every x X.  Hence, we get 

21 1
p(Sx, TSx) p(Sx, TSx) + p(S x, Tx) rp(x, Sx).

2 2
                  (2) 

Now, putting y = Tx  in (1), we have 

 (r)min p(x, Tx),p(x, Sx) p(x, Tx)   

implies 

2 21
max p(Sx, STx),p(Tx, T x), p(Sx, T x) + p(STx, Tx) rp(x, Tx)

2


 
   

 
 

for every x X . So, we get 

2
p(Tx, T x) rp(x, Tx)                                                 (3) 

and 

21 1
p(Tx, STx) p(Sx, T x) + p(STx, Tx) rp(x, Tx).

2 2
             (4) 

Let 0x  be an arbitrary element in X.  We obtain a sequence n{x }  such that 2n+1 2nx = Sx  and 2n+2 2n+1x = Tx  for each 

{ }n 0  . By (4), we get 

2n 2n+1 2n-1 2n-1 2n-1 2n-1 2n-1 2np(x , x )= p(Tx , STx ) 2rp(x , Tx ) = 2rp(x , x . )  

And also, from (2), we get 

2n+1 2n+2 2n 2n 2n 2n 2n 2n+1p(x , x ) = p(Sx , TSx ) 2rp(x , Sx ) = 2rp(x , x ).  

Therefore, for each { }n 0  , we get 
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n n+1 n-1 n

2
n-2 n-1

n
0 1

p(x , x ) 2rp(x , x )

                   (2r) p(x , x )

                   

        

(2r

       

) p(x ,

 

x ).







           (5) 

Taking limit as n  in inequality (5), we get n n+1
n
lim p(x , x ) = 0


 for 
1

r 0,
2


 

 
. From properties of PMS, we get 

n n n n+1 n+1 n+1 n n+1p(x , x ) p(x , x ) andp(x , x ) p(x , x ).   

Since n n+1
n
lim p(x , x ) = 0


 for 
1

r 0,
2


 

 
, we get 

n n n+1 n+1
n n
lim p(x ,x ) = 0 and lim p(x ,x ) = 0.
 

         (6) 

s
n n+1 n n+1 n n n+1 n+1

n n+1
n

0 1

p (x , x ) = 2p(x , x ) - p(x , x ) - p(x , x )

2p(x , x )

2((2r) p(x , x )).





        (7) 

From (7), we have for any k,n


  

 

s s s s
n n+k n n+1 n+1 n+2 n+k-1 n+k

n n+1 n+k-1
0 1 0 1 0 1

n+k-1
i

0 1
i=n

p (x , x ) p (x , x ) + p (x , x ) + + p (x , x )

                     2(2r) p(x , x ) + 2(2r) p(x , x ) + + 2(2r) p(x , x )

                     = 2 (2r) p(x , x )

                     2 (2r







  i
0 1

i=n
) p(x , x ) .





 

Then there exists a positive integer 0n   such that 
s

n n+kp (x , x ) <   for every 0n n , all k


  and an arbitrary 

0  . We say that n{x }  is a Cauchy sequence in the metric space 
s

(X,p ) . Since (X,p)  is a complete PMS, 
s

(X,p )  is 

also complete metric space. Hence, there exists u X  such that lim n
n

x = u


 in 
s

(X,p ) . So, we get s
n

n
lim p (x ,u) = 0


 

implies 

n n m
n n,m

p(u,u) = lim p(x ,u) = lim p(x , x ).
 

 

Since n{x }  is a Cauchy sequence in the metric space 
s

(X,p ) , we get s
n m

n,m
lim p (x , x ) = 0


. So, we have 

s
n m n m m m n n

n,m n,m n,m n,m
lim p (x , x ) lim 2p(x , x ) - lim p(x , x ) - lim p(x , x ) = 0.
   

  

From (6), we get 

m m n n
n,m n,m

lim p(x , x ) = lim p(x , x ) = 0
 

 

implies n m
n,m

lim p(x , x ) = 0


 and 

n n m
n n,m

p(u,u) = lim p(x ,u) = lim p(x , x ) = 0.
 

 

So, we get 

2n+1 2n+2
n n
lim p(x ,u) = lim p(x ,u) = 0
 

 

implies 
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2n 2n+1
n n
lim p(Sx ,u) = lim p(Tx ,u) = 0.
 

         (8) 

We take x,u X  such that x u . As p(u,u) = 0 , we get, 2n+1 2n+1
n
lim p(x , Tx ) = 0


 

and 2n+1
n
lim p(x ,x) 0


 . Then, there exists some 
k2n +1x X  such that 

k k k k k2n +1 2n +1 2n +1 2n +1 2n +1(r)min{p(x , Tx ),p(x , Sx )} p(x , x)   

implies 

 k k k k k2n +1 2n +1 2n +1 2n +1 2n +1

1
max p(Sx , Sx),p(Tx , Tx), p(Sx , Tx) + p(Sx, Tx ) rp(x , x).

2
 

   

Hence, we get 

k k2n +1 2n +1p(Tx , Tx) rp(x , x).  

If we take the limit of both sides as n , from (8), we get 

k k2n +1 2n +1
n n

p(u, Tx) = lim p(Tx , Tx) r lim p(x ,x) = rp(u,x).
 

  

Then, we have for each x u   

p(u, Tx) rp(u, x).            (9) 

To show that the equation 

n
p(T u,u) p(Tu,u)            (10) 

provides for each n , we use induction. For n = 1 , the inequality is obvious. We suppose that the inequality (10) is 
true for some m . So, we get  

m
p(T u,u) p(Tu,u).  

For n = m + 1 , if 
m

T u = u , then 

m+1 m
p(T u,u) = p(T(T u),u) = p(Tu,u).           (11) 

If 
m

T u u , then by (9) 

m+1 m
p(T u,u) rp(T u,u) rp(Tu,u) p(Tu,u).            (12) 

So, from (11) and (12), we get 

m+1
p(T u,u) p(Tu,u).  

Then, inequality (10) is satisfied for all n . 

Now, we will show that Tu = u . We assume that Tu u . Since 
1

0 r <
2

 , so 2

1 - r
(r)

r
  .  Formerly, using induction, 

we prove that 

n
p(T u, Tu) rp(Tu,u)            (13) 

for each n . For n = 1 , it is obvious. Moreover, for n = 2 , from (3) we get inequality (13) is satisfied. We suppose 

that the inequality (13) is true for some n > 2 . So, we have 

n n n n

n n

n

p(Tu,u) p(u, T u) + p(T u, Tu) - p(T u, T u)

               p(u, T u) + p(T u, Tu)

               p(u, T u) + rp(Tu,u).







 

So, we get 
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n
(1 - r)p(u, Tu) p(u, T u) . 

Then, from (3), we obtain that 

 n n n n+1 n n+1

n n+1

2

(r)min p(ST z, T u),p(T u, T u) (r)p(T u, T u)

1 - r
                                                                 = p(T u, T u)

r

1 - r
                                                                 

  


n n+1

n

n

n

p(T u, T u)
r

1 - r
                                                                 r p(u, Tu)

r

                                                                 = (1 - r)p(u, Tu)

                            



n
                                     p(u, T u).

 

This implies 

 n+1 n n+1 n n+1

n

1
p(T u, Tu) max p(ST u, Su),p(T u, Tu), p(ST u, Tu) + p(Su, T u)

2

                      rp(u, T u).





    

Then from (10), we get 

n+1 n
p(T u, Tu) rp(T u,u) rp(Tu,u).   

Hence, the inequality (13) is satisfied for each n . 

Now, Tu u  and (13) implies that 
n

T u u . If not, 

n
p(T u, Tu) rp(Tu,u) p(u, Tu) rp(u, Tu) p(u, Tu)     

for 
 

 

1
r 0,

2
, which is impossible. So, from (9), we have 

n+1 n 2 n-1 n
p(u, T u) rp(u, T u) r p(u, T u) r p(u, Tu).     

Taking the limit of both sides, we get 

n+1

n
lim p(u, T u) = 0 = p(u,u)


 

for 
 

 

1
r 0,

2
. Then, 

n
T u u . Since 

n
p(T u, Tu) rp(Tu,u) , we get 

n

n n
p(u, Tu) = lim p(T u, Tu) lim rp(Tu,u) = rp(Tu,u).

 
  

So, we get p(Tu,u) = 0 , which is a contradiction. So, Tu = u . Hence, u is fixed point of T . Therefore, u is also a fixed 

point of S . As a result,u is a common fixed point of T and S . 

Now, to show the uniqueness of this common fixed point, we assume that u  and v  are common fixed points of T  
and S  where u v . Taking x = u  and y = v  in inequality (1), we have 

 0 = (r)min p(u, Tu),p(u, Su) p(u, v)   

implies 
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  
  

1
      max p(Su, Sv),p(Tu, Tv), p(Su, Tv) + p(Tu, Sv) rp(u, v)

2

1
max p(u, v),p(u, v), 2p(u, v) rp(u, v)

2

p(u, v) rp(u, v) < p(u, v).



 

 

 

So, p(u, v) = 0  which is a contradiction. Hence, u = v . 

 

In Theorem 1, if we take as S = T , then we get the following corollary which is Suzuki type result in partial metric 

spaces [15]. 

 

Corollary 1. Let (X,p)  be a complete PMS, T : X X  be a self-mapping and a nonincreasing function 

 
 
  

1
: [0,1) ,1

2
 be defined by 

 

  













2

5 - 1
1, 0 r ,

2

1 - r 5 - 1 1
(r) = , r ,

2 2

1 1
, r < 1.

1 + r 2

r
 

If there exists 
 

 

1
r 0,

2
 such that T  satisfies the condition 

(r)p(x, Tx) p(x, y)   

implies 

p(Tx, Ty) rp(x, y)  

for each x, y X , then T  has a unique fixed point. 

 

Corollary 2. Let (X,p)  be a complete PMS, f, S, T : X X  be three self-maps and a nonincreasing function 

 
 
  

1
: [0,1) ,1

2
 be defined by 

 

  













2

5 - 1
1, 0 r ,

2

1 - r 5 - 1 1
(r) = , r ,

2 2

1 1
, r < 1.

1 + r 2

r
 

If there exists 
 

 

1
r 0,

2
 such that 

 (r)min p(x, fTx),p(x, fSx) p(x, y)   

implies 
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 
1

max p(fSx, fSy),p(fTx, fTy), p(fSx, fTy) + p(fSy, fTx) rp(x, y),
2


 
 
 

      (14) 

also, if f  is one to one, fS = Sf  and fT = Tf , then f , T  and S  have a common fixed point. 

 

Proof. If we consider fS  and fT  as two maps with given contractive condition of Theorem 1, then fS  and fT have a 

common fixed point u X . Namely, fSu = fTu = u . Since f  is one to one, we get 

fSu = fTu = u Su = Tu.  

  Then, putting x = u  and y = Tu  in inequality (14) 

 (r)min p(u, fTu),p(u, fSu) p(u, Tu)   

  implies 

 
  

  

2 21
      max p(fSu, fSTu),p(fTu, fT u), p(fSu, fT u) + p(fSTu, fTu) rp(u, Tu)

2

1
max p(fSu, SfTu),p(fTu, TfTu), p(fSu, TfTu) + p(SfTu, fTu) rp(u, Tu)

2

1
max p(u, Su),p(u, Tu), p(u, Tu) + p(Su,u) rp(u, Tu)

2

p(u, Tu) rp(u, Tu).



 

 

 

  

 

Then, p(u, Tu) = 0.  So, we get Tu = u  which implies Tu = Su = u  and also fu = fTu = u . So, f , T  and S  have a 

common fixed point. 

 

Example 1. Let 
1 1

X = 0, , ,2
4 3


 
 
 

. Define p : X × X


  by p(x, y) = max{x, y}  for all x, y X . Then, it is obvious 

that (X,p)  is a complete PMS. And define two maps T  and S  by 

0 , x 2

Tx = 1
, x = 2

3






 

and 

0 , x 2

Sx = 1
, x = 2

4






 

for x X . Moreover, we choose as 
1

r =
6

. So, we get (r) = 1 .  

Case I  If 
1 1

x, y 0, ,
4 3


 
 
 

, we get 

     

                                                                                                

(r)min p(x, Tx),p(x, Sx) = min p(x, 0),p(x, 0) = min max{x,0},max{x,0}

= x max{x, y} = p(x, y)




 

implies 
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    1 1
max p(Sx, Sy),p(Tx, Ty), p(Sx, Ty),p(Sy, Tx)  = max p(0, 0),p(0, 0), [p(0, 0) + p(0, 0)]

2 2

1
                                                                                     = 0 max{x, y} = rp(x, y).

6


 

Case II  If  1 1
x 0, ,

4 3
  and y = 2 , we get 

 (r)min p(x, Tx),p(x, Sx) = min{p(x, 0),p(x, 0)}

                                               = min{max{x, 0},max{x, 0}}

                                               = x max{x, y} = p(x, y)





 

implies 

  1 1 1 1 1 1
max p(Sx, Sy),p(Tx, Ty), p(Sx, Ty),p(Sy, Tx) = max p 0, ,p 0, , p 0, + p , 0

2 4 3 2 3 4

1 1
                                                                                      = max

3 6


         
         
         

{x,2} = rp(x, y).

 

Case III  If  1 1
y 0, ,

4 3
  and x = 2 , we get 

 
1 1

(r)min p(x, Tx),p(x, Sx) = min p 2, ,p 2, = 2 max{2, y} = p(x, y)
3 4

  
    
    
    

 

implies 

  1 1 1 1 1 1
max p(Sx, Sy),p(Tx, Ty), p(Sx, Ty),p(Sy, Tx) = max p , 0 ,p , 0 , p , 0 + p 0,

2 4 3 2 4 3

1 1
                                                                                      = max

3 6


         
         
         

{2, y} = rp(x, y).

 

Case IV  If x = y = 2 , we get 

 
1 1

(r)min p(x, Tx),p(x, Sx) = min p 2, ,p 2,
3 4

                                               = 2 max{x, y} = p(x, y)





    
    
      

implies 

  1 1 1 1 1 1 1 1 1 1
max p(Sx, Sy),p(Tx, Ty), p(Sx, Ty),p(Sy, Tx) = max p , ,p , , p , + p ,

2 4 4 3 3 2 4 3 4 3

1 1
                                                                                      =

3


         
         
         

max{x, y} = rp(x, y).
6

 

Thus, T  and S  satisfy all the hypotheses of Theorem 1. So, T  and S  have a unique common fixed point. Moreover, it 
is 0 . 

 
Application 

Let  Y  and Z  be Banach spaces, S Y  be a state space, D Z  be a decision space and iH : S × D ×   for 

i = 1,2. The problem of dynamic programming related to the multistage process reduces to the problem of solving the 

following functional equation: 
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i i i
y D

q (x) = sup{H (x, y,q (x, y))}, x S, i = 1,2.


          (15) 

In this section, using Theorem 1, we show existence and uniqueness of a bounded common solution of the functional 
equation (15). B(S)  is a Banach space which consists of all bounded real functionals on S  with the norm 

x S

h = sup|h(x)|


‖ ‖  for an arbitrary h B(S) . (B(S), . )‖ ‖  endowed with the metric d  defined by 

x S

d(h,k) = sup|h(x) - k(x)|


 

for h,k B(S) . Then, the convergence in the space B(S)  corresponds to uniform convergence. So, if we take a Cauchy 

sequence n{h }  in B(S) , the sequence n{h }  converges uniformly to a function 
*

h . It is bounded. Hence, 
*

h B(S) . We 

define the partial metric such that 

p(h,k) = d(h,k) + b                                                                                (16) 

for all h,k B(S)  where b > 0 . Then, (B(S),p)  is a complete PMS. Now, we define mappings iA : B(S) B(S)  by 

i i
y D

A h(x) = sup{H (x, y,h(x, y))}


                                                                              (17) 

i i
y D

A k(x) = sup{H (x, y,k(x, y))}


                                                                         (18) 

for i = 1,2 , h,k B(S) , x S . It is clear that if the functions iH  are bounded, then iA  are well defined for i = 1,2 . 

 

Theorem 2. Let the functions iH : S × D ×   be bounded and iA : B(S) B(S)  be defined as in (17). If there exists 


 

 

1
r 0,

2
 such that 

1 2(r)min{|h(t) - A h(t)|,|h(t) - A h(t)|} |h(t) - k(t)|                          (19) 

implies 

i j|H (x, y,h(t)) - H (x, y,k(t))| r|h(t) - k(t)|                                              (20) 

for every (x, y) S × D , h,k B(S)  and t S  and i, j = 1,2 , then the functional equations (15) have a unique common 

bounded solution in B(S)  for i = 1,2 . 

 

Proof. Let  be an arbitrary positive number and h,k B(S) . By (17), there exist 1 2y , y D  such that  

1 1 1 1A h(x) < H (x, y ,h(x, y )) +                                                          (21) 

1 1 1 1A k(x) < H (x, y ,k(x, y )) +                                                              (22) 

2 2 2 2A h(x) < H (x, y ,h(x, y )) +                                                             (23) 

2 2 2 2A k(x) < H (x, y ,k(x, y )) +                                                              (24) 

  and  

1 1 1 1A h(x) H (x, y ,h(x, y ))                                                                    (25) 

1 1 1 1A k(x) H (x, y ,k(x, y ))                                                                     (26) 

2 2 2 2A h(x) H (x, y ,h(x, y ))                                                                     (27) 

2 2 2 2A k(x) H (x, y ,k(x, y ))                                                                         (28) 

for x S . The inequality (19)   
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1 2(r)min{|h(x) - A h(x)|,|h(x) - A h(x)|} |h(x) - k(x)|                                    (29) 

is satisfied for 
 

 

1
r 0,

2
. Then, from (23), (24), (27) and (28), we get the functional equations 

 
                      

2 2 2 2 2 2 2 2

2 2 2 2 2 2

A h(x) - A k(x) H (x, y ,h(x, y )) - H (x, y ,k(x, y )) +

|H (x, y ,h(x, y )) - H (x, y ,k(x, y ))|+




                               (30) 

and 

                      

2 2 2 2 2 2 2 2

2 2 2 2 2 2

A k(x) - A h(x) H (x, y ,k(x, y )) - H (x, y ,h(x, y )) +

|H (x, y ,k(x, y )) - H (x, y ,h(x, y ))|+




                                 (31) 

From (30) and (31), we get 

2 2 2 2 2 2 2 2| A h(x) - A k(x)| |H (x, y ,h(x, y )) - H (x, y ,k(x, y ))|+  

Using (20), we can say that 

2 2| A h(x) - A k(x)| r |h(x) - k(x)|+ .                                                      (32) 

Similarly, using (20), (21), (22), (25) and (26), we get 

.1 1| A h(x) - A k(x)| r |h(x) - k(x)|+                                                       (33) 

On the other hand, from (22), (23), (26) and (27), we get 

1 1 12 2 2 2 2|A h(x) - A k(x)| |H (x, y ,h(x, y )) - H (x, y ,k(x, y ))|+                                          (34) 

and from (21), (24), (25) and (28), we get 

1 1 12 2 2 2 2|A k(x) - A h(x)| |H (x, y ,k(x, y )) - H (x, y ,h(x, y ))|+                                           (35) 

If we sum both sides of the inequalities (34) and (35) and multiply them by 
1

2
, then we get 

  .2 1 2 1

1
| A h(x) - A k(x)|+ | A k(x) - A h(x)| r |h(x) - k(x)|+

2
                                (36) 

Since the inequalities (32), (33) and (36) hold for any x S  and 0 , we can ignore . Then, we get 

2 2 1 1|A h(x) - A k(x)| r |h(x) - k(x)|,|  A h(x) - A k(x)| r |h(x) - k(x)|,   

and 

 2 1 2 1

1
| A h(x) - A k(x)|+ | A k(x) - A h(x)| r |h(x) - k(x)|.

2
  

Thus, it is true that 

  2 2 1 1 2 1 2 1
1

max |A h(x)-A k(x)|+|A h(x)-A k(x)|, |A h(x)-A k(x)|+|A k(x)-A h(x)| r |h(x) - k(x)|.
2

            (37) 

Now, if we take supremum in the inequalities (29) and (37) and add 0b   to them, we get from (16) 

1 2(r)min{p(h(x), A h(x)),p(h(x), A h(x))} p(h(x),k(x))   

implies 

  2 2 1 1 2 1 2 1
1

max p(A h(x),A k(x)),p(A h(x),A k(x)), p(A h(x),A k(x))+p(A k(x),A h(x)) rp(h(x),k(x))
2

  
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for h,k B(S) , x S  and 
 

 

1
r 0,

2
. So, from Theorem 1, equations (15) and (17) there exists a unique common fixed 

point 
*

h B(S) . Namely, the system of functional equations (15) has a unique common bounded solution for i = 1,2 . 
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