Research Article
BibTex RIS Cite

Searching for New Supernova Remnant Candidates from the VTSS Survey

Year 2022, Volume: 43 Issue: 4, 760 - 768, 27.12.2022
https://doi.org/10.17776/csj.1188709

Abstract

The Virginia Tech Spectral Line Survey (VTSS) Galactic Plane Hydrogen-Alpha Survey has the strong ability to search and discover many different types of objects that cannot be identified clearly on red plates and by other Multi-Wavelength Sky Surveys. Here we make a visual search from the VTSS fields with the supportive surveys of Southern Hydrogen-Alpha Sky Survey Atlas (SHASSA) and MDW Hydrogen-Alpha Sky Survey (MDWS) fields, in the Galactic latitude of |b| between -17 ° and 7 ° for several new optical emission nebulae. Seven candidates were chosen as most likely supernova remnant candidates by their physical shapes and the three of all having [SII]/Hα ratio larger than 0.4, found with T100 photometric observations, are considered to be supernova remnant candidates. Comprehensive optical imaging and spectroscopic observations with multi-wavelength observations will help us to identify the types of all these galactic candidates, more precisely.

Supporting Institution

TÜBİTAK National Observatory - Gözlemevi (TUG)

Project Number

18AT100-1309

Thanks

I would like to thank TUBITAK National Observatory for a partial support in using T100 telescope with project number 18AT100-1309. Also, I would like to thank the Virginia Tech Spectral-Line Survey (VTSS), which is supported by the National Science Foundation. This work made use of Astropy a community-developed core Python package and an ecosystem of tools and resources for astronomy.

References

  • [1] Green D.A., A revised catalogue of 294 Galactic supernova remnants, J. Astrophys. Astr., 40 (4) (2019) 36-48.
  • [2] Downes D., New Radio Results on Supernova Remnants, AJ, 76 (1971) 305-316.
  • [3] Chevalier R.A., The interaction of supernovae with the interstellar medium, ARAA, 15 (1977) 175-196.
  • [4] Kopsacheili M., Zezas A., Leonidaki I., A diagnostic tool for the identification of supernova remnants, MNRAS, 491 (2020) 889-902.
  • [5] Boumis P., Xilouris E. M., Alikakos J., Christopoulou,P. E., Mavromatakis F, Katsiyannis A. C., Goudis C. D., Discovery of optical emission from the supernova remnant G 32.8-0.1 (Kes 78), A&A, 499 (3) (2009) 789-797.
  • [6] Stupar, M., Parker Q. A., Optical detection and spectroscopic confirmation of supernova remnant G213.0-0.6 (now redesignated as G213.3-0.4), MNRAS, 419 (2) (2012) 1413-1420.
  • [7] Neustadt J. M. M., Fesen R. A., Black C. S., Detection of optical emission associated with the Galactic SNR G64.5+0.9, MNRAS, 469 (2017) 516-520.
  • [8] Stupar M., Parker Q. A., Frew D. J., Confirmation of G6.31+0.54 as a part of a Galactic supernova remnant, MNRAS, 479 (2018) 4432-4439.
  • [9] How T. G., Fesen R. A., Neustadt J. M. M., Black C. S., Outter, N., Optical emission associated with the Galactic supernova remnant G179.0+2.6, MNRAS, 478 (2) (2018) 1987-1993.
  • [10] Fesen R. A., Neustadt J. M. M., How T. G., Black C. S., Detection of extensive optical emission from the extremely radio faint Galactic supernova remnant G182.4+4.3, MNRAS, 486 (4) (2019) 4701- 4709.
  • [11] Fesen R.A., Weil K. E., Raymond J.C., Huet L., Rusterholz M., Di Cicco D., Mittelman D., Walker S., Drechsler M. and Faworski S., G107.0+9.0: a new large optically bright, radio, and X-Ray faint galactic supernova remnant in Cepheus, MNRAS, 498 (4) (2020) 5194–5206.
  • [12] Fesen R.A., Neustadt J.M.M., Black C.S. and Koeppel. A.H.D., Discovery of an Apparent High Latitude Galactic Supernova Remnant, AJ, 812 (1) (2015) 37-48.
  • [13] Stupar M., Parker Q. A., Filipovic M. D., Newly confirmed and candidate Galactic SNRs uncovered from the AAO/UKST Hα survey, MNRAS, 390 (3) (2008) 1037-1054.
  • [14] Fesen R. A., Milisavljevic D., Optical Discovery of an Apparent Galactic Supernova Remnant G159.6+7.3, AJ, 140 (5) (2010) 1163-1167.
  • [15] Sabin L., Parker Q. A., Contreras M. E., Olguín L., Frew D. J., Stupar M., Vázquez R., Wright N. J., Corradi R. L. M., Morris R. A. H., New Galactic supernova remnants discovered with IPHAS, MNRAS, 431 (1) (2013) 279-291.
  • [16] Dennison B., Simonetti J. H., Topasna G. A., An imaging survey of northern galactic Hα emmission with arcminute resolution, PASA, 15 (1) (1998) 147-148.
  • [17] Finkbeiner D.P., A Full-Sky Hα Template for Microwave Foreground Prediction, ApJS, 146 (2) (2003) 407-415.
  • [18] [Gaustad J. E., McCullough P. R., Rosing W., and Buren D. Van, A Robotic Wide-Angle Hα Survey of the Southern Sky, PASP, 113 (789) (2001) 1326–1348.
  • [19] Drew J.E., Greimel R., Irwin M.J., et al., The INT Photometric Hα Survey of the Northern Galactic Plane (IPHAS), MNRAS, 362 (3) (2005) 753-776.
  • [20] González-Solares E.A., Walton N.A, Greimel R., et al., Initial data release from the INT Photometric Hα Survey of the Northern Galactic Plane (IPHAS), MNRAS, 388 (1) (2008) 89-104.
  • [21] Mathewson, D. S., Clarke, J. N., Supernova Remnants in the Magellanic Clouds, AJ, 182 (1973) 697-698.
  • [22] Blair W. P., Kirshner R. P., Chevalier R. A., Supernova remants in M31, ApJ, 247 (1981) 879-893.
  • [23] Dopita M.A., Benvenuti P., Dodorico S., Binette L., Radiative shock-wave theory. I. Chemical abundance diagnostics and galactic abundance gradients, ApJ, 276 (1984) 653-666.
  • [24] Fesen R. A., Blair W. P., Kirshner R. P., Optical emission-line properties of evolved galactic supernova remnants, AJ, 292 (1985) 29-48.
  • [25] Leonidaki I., Boumis P., Zezas A., A multiwavelength study of supernova remnants in six nearby galaxies - II. New optically selected supernova remnants, MNRAS, 429 (1) (2013) 189-220.
  • [26]Long K. S., Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us, in Alsabti A. W., Murdin P., eds, Handbook of Supernovae, Springer International Publishing AG, (2017) 2005-2040.
  • [27] https://doi.org/10.1007/978-3-319-21846-5_90
  • [28]Frew D.J., Bojicic I.S., Parker Q.A., A catalogue of integrated Hα fluxes for 1258 Galactic planetary nebulae, MNRAS, 431 (1) (2013) 2–26.
  • [29]Dharmawardena T. E., Barlow M. J., Drew J. E., Seales A., Sale S. E., Jones D., Mampaso A., Parker Q. A., Sabin L., Wesson R., Hα fluxes and extinction distances for planetary nebulae in the IPHAS survey of the northern galactic plane, MNRAS, 501 (4) (2021) 6156–6167.
  • [30]Anderson L.D., Bania T.M., Balser D. S., Cunningham V., Wenger T. V., Johnstone B.M., and Armentrout W.P., The WISE Catalog of Galactic H II Regions, ApJS, 212 (1) (2014) 1–18.
  • [31] The Astropy Collaboration, Astropy: A community-developed core Python package and an ecosystem of tools and resources for astronomy, AA, 558 (2013) A33.
  • [32]The Astropy Collaboration, Astropy: A community-developed core Python package and an ecosystem of tools and resources for astronomy, AJ, 156 (2018) 123.
Year 2022, Volume: 43 Issue: 4, 760 - 768, 27.12.2022
https://doi.org/10.17776/csj.1188709

Abstract

Project Number

18AT100-1309

References

  • [1] Green D.A., A revised catalogue of 294 Galactic supernova remnants, J. Astrophys. Astr., 40 (4) (2019) 36-48.
  • [2] Downes D., New Radio Results on Supernova Remnants, AJ, 76 (1971) 305-316.
  • [3] Chevalier R.A., The interaction of supernovae with the interstellar medium, ARAA, 15 (1977) 175-196.
  • [4] Kopsacheili M., Zezas A., Leonidaki I., A diagnostic tool for the identification of supernova remnants, MNRAS, 491 (2020) 889-902.
  • [5] Boumis P., Xilouris E. M., Alikakos J., Christopoulou,P. E., Mavromatakis F, Katsiyannis A. C., Goudis C. D., Discovery of optical emission from the supernova remnant G 32.8-0.1 (Kes 78), A&A, 499 (3) (2009) 789-797.
  • [6] Stupar, M., Parker Q. A., Optical detection and spectroscopic confirmation of supernova remnant G213.0-0.6 (now redesignated as G213.3-0.4), MNRAS, 419 (2) (2012) 1413-1420.
  • [7] Neustadt J. M. M., Fesen R. A., Black C. S., Detection of optical emission associated with the Galactic SNR G64.5+0.9, MNRAS, 469 (2017) 516-520.
  • [8] Stupar M., Parker Q. A., Frew D. J., Confirmation of G6.31+0.54 as a part of a Galactic supernova remnant, MNRAS, 479 (2018) 4432-4439.
  • [9] How T. G., Fesen R. A., Neustadt J. M. M., Black C. S., Outter, N., Optical emission associated with the Galactic supernova remnant G179.0+2.6, MNRAS, 478 (2) (2018) 1987-1993.
  • [10] Fesen R. A., Neustadt J. M. M., How T. G., Black C. S., Detection of extensive optical emission from the extremely radio faint Galactic supernova remnant G182.4+4.3, MNRAS, 486 (4) (2019) 4701- 4709.
  • [11] Fesen R.A., Weil K. E., Raymond J.C., Huet L., Rusterholz M., Di Cicco D., Mittelman D., Walker S., Drechsler M. and Faworski S., G107.0+9.0: a new large optically bright, radio, and X-Ray faint galactic supernova remnant in Cepheus, MNRAS, 498 (4) (2020) 5194–5206.
  • [12] Fesen R.A., Neustadt J.M.M., Black C.S. and Koeppel. A.H.D., Discovery of an Apparent High Latitude Galactic Supernova Remnant, AJ, 812 (1) (2015) 37-48.
  • [13] Stupar M., Parker Q. A., Filipovic M. D., Newly confirmed and candidate Galactic SNRs uncovered from the AAO/UKST Hα survey, MNRAS, 390 (3) (2008) 1037-1054.
  • [14] Fesen R. A., Milisavljevic D., Optical Discovery of an Apparent Galactic Supernova Remnant G159.6+7.3, AJ, 140 (5) (2010) 1163-1167.
  • [15] Sabin L., Parker Q. A., Contreras M. E., Olguín L., Frew D. J., Stupar M., Vázquez R., Wright N. J., Corradi R. L. M., Morris R. A. H., New Galactic supernova remnants discovered with IPHAS, MNRAS, 431 (1) (2013) 279-291.
  • [16] Dennison B., Simonetti J. H., Topasna G. A., An imaging survey of northern galactic Hα emmission with arcminute resolution, PASA, 15 (1) (1998) 147-148.
  • [17] Finkbeiner D.P., A Full-Sky Hα Template for Microwave Foreground Prediction, ApJS, 146 (2) (2003) 407-415.
  • [18] [Gaustad J. E., McCullough P. R., Rosing W., and Buren D. Van, A Robotic Wide-Angle Hα Survey of the Southern Sky, PASP, 113 (789) (2001) 1326–1348.
  • [19] Drew J.E., Greimel R., Irwin M.J., et al., The INT Photometric Hα Survey of the Northern Galactic Plane (IPHAS), MNRAS, 362 (3) (2005) 753-776.
  • [20] González-Solares E.A., Walton N.A, Greimel R., et al., Initial data release from the INT Photometric Hα Survey of the Northern Galactic Plane (IPHAS), MNRAS, 388 (1) (2008) 89-104.
  • [21] Mathewson, D. S., Clarke, J. N., Supernova Remnants in the Magellanic Clouds, AJ, 182 (1973) 697-698.
  • [22] Blair W. P., Kirshner R. P., Chevalier R. A., Supernova remants in M31, ApJ, 247 (1981) 879-893.
  • [23] Dopita M.A., Benvenuti P., Dodorico S., Binette L., Radiative shock-wave theory. I. Chemical abundance diagnostics and galactic abundance gradients, ApJ, 276 (1984) 653-666.
  • [24] Fesen R. A., Blair W. P., Kirshner R. P., Optical emission-line properties of evolved galactic supernova remnants, AJ, 292 (1985) 29-48.
  • [25] Leonidaki I., Boumis P., Zezas A., A multiwavelength study of supernova remnants in six nearby galaxies - II. New optically selected supernova remnants, MNRAS, 429 (1) (2013) 189-220.
  • [26]Long K. S., Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us, in Alsabti A. W., Murdin P., eds, Handbook of Supernovae, Springer International Publishing AG, (2017) 2005-2040.
  • [27] https://doi.org/10.1007/978-3-319-21846-5_90
  • [28]Frew D.J., Bojicic I.S., Parker Q.A., A catalogue of integrated Hα fluxes for 1258 Galactic planetary nebulae, MNRAS, 431 (1) (2013) 2–26.
  • [29]Dharmawardena T. E., Barlow M. J., Drew J. E., Seales A., Sale S. E., Jones D., Mampaso A., Parker Q. A., Sabin L., Wesson R., Hα fluxes and extinction distances for planetary nebulae in the IPHAS survey of the northern galactic plane, MNRAS, 501 (4) (2021) 6156–6167.
  • [30]Anderson L.D., Bania T.M., Balser D. S., Cunningham V., Wenger T. V., Johnstone B.M., and Armentrout W.P., The WISE Catalog of Galactic H II Regions, ApJS, 212 (1) (2014) 1–18.
  • [31] The Astropy Collaboration, Astropy: A community-developed core Python package and an ecosystem of tools and resources for astronomy, AA, 558 (2013) A33.
  • [32]The Astropy Collaboration, Astropy: A community-developed core Python package and an ecosystem of tools and resources for astronomy, AJ, 156 (2018) 123.
There are 32 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Elif Beklen 0000-0002-4807-2180

Project Number 18AT100-1309
Publication Date December 27, 2022
Submission Date October 13, 2022
Acceptance Date December 7, 2022
Published in Issue Year 2022Volume: 43 Issue: 4

Cite

APA Beklen, E. (2022). Searching for New Supernova Remnant Candidates from the VTSS Survey. Cumhuriyet Science Journal, 43(4), 760-768. https://doi.org/10.17776/csj.1188709