Research Article
PDF EndNote BibTex RIS Cite

Investigation of the Effect of Different Synthesis Methods on the Photocatalytic Activity of TiO2: Comparison of Rutile and Anatase TiO2

Year 2022, Volume 43, Issue 3, 409 - 415, 30.09.2022
https://doi.org/10.17776/csj.1107688

Abstract

In this study, the effect of the synthesis method (solid state, sol-gel and hydrothermal) on the photocatalytic activity of the anatase and rutile phases of TiO2 was evaluated. As a result of XRD, FESEM and BET analysis of pure phase TiO2 powders in anatase and rutile phases, the changes in particle structures, surface areas and morphologies were examined and the differences in both synthesis method and phase structures were evaluated with Photodegradation experiments. The results of the X-ray diffraction (XRD) analysis showed that the TiO2 compound synthesized in the anatase phase and by the synthesized hydrothermal method exhibited a much smaller crystal size than the other synthesis methods and the rutile phase. Surface morphology examinations of the samples were made with scanning electron microscopy (FESEM), particle sizes were determined in the range of 90-200 nm, and their surface areas were examined by Brunauer–Emmett–Teller (BET) analysis.The adsorption-desorption isotherms shown also support the XRD data of the highest surface area.The photocatalytic behavior of the compounds was investigated using methylene blue degradation.As a result of all the syntheses and characterization studies, it has been shown that TiO2 obtained by hydrothermal method exhibits the best photocatalytic activity.

References

  • [1] Ebrahimi M., Zakery A., Karimipour M., Molaei M., Nonlinear optical properties and optical limiting measurements of graphene oxide - Ag@TiO2 compounds, Opt. Mater., 57 (2016) 146-152.
  • [2] Le L., Xu J., Zhou Z., Wang H., Xiong R., Shi J., Effect of oxygen vacancies and Ag deposition on the magnetic properties of Ag/N co-doped TiO2 single-crystal films, Mater. Res. Bull., 102 (2018) 337-341.
  • [3] An G., Ma W., Sun Z., Liu Z., Han B., Miao S., Miao Z., Ding K., ,Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation, Carbon 45(9) (2007) 1795-1801.
  • [4] Wang T., Wei J., Shi H., Zhou M., Zhang Y., Chen Q., Zhang Z., Physica E., 86 (2017) 103-110.
  • [5] Liu H., Dong X., Wang X., Sun C., Li J., Zhu Z., A green and direct synthesis of graphene oxide encapsulated TiO2 core/shell structures with enhanced photoactivity, Chem. Eng. J., 230 (2013) 279-285.
  • [6] Wang X., Li Y., Rare-Earth-Compound Nanowires, Nanotubes, and Fullerene-Like Nanoparticles: Synthesis, Characterization, and Properties., Chem Eur J., 9 (22) (2003) 5627-5635.
  • [7] Miao-Miao Y., Zhong-Lin C., Wen-Shou W., Liang Z., Ji-Min S., Template-free Hydrothermal Preparation of Mesoporous TiO2 Microspheres on a Large Scale., Chemistry Letters, 37 (9) (2008) 938-939.
  • [8] Wang W.S, Zhen L, Xu C.Y, Zhang B.Y, Shao W.Z., Room Temperature Synthesis of Hollow CdMoO4 Microspheres by a Surfactant-Free Aqueous Solution Route., J Phys Chem., 110 46 (2006) 23154–23158.
  • [9] Zhang Q., Ge J.P., Goebl J., Hu Y.X., Lu Z.D., Yin Y., Rattle-type silica colloidal particles prepared by a surface-protected etching process.,Nano Res., 2 (2009) 583–591.
  • [10] Fujishima A., Rao T.N., Tryk D.A., TiO2 Photocatalysts and Diamond Electrodes, Electrochimica Acta, 45 (28) (2000) 4683-4690.
  • [11] Zhao, J., Bowman L., Zhang X., Vallyathan V., Young S.H., Castranova V., ve Ding M., Titanium Dioxide (TiO2) Nanoparticles Induce JB6 Cell Apoptosis Through Activation of the Caspase-8/Bid and Mitochondrial Pathways, J.Toxicol. Environ. Health Part A.,72 (19) (2009) 1141-1149.
  • [12] Liu X., Zhou K., Wang L., Wang B., Li Y., Oxygen Vacancy Clusters Promoting Reducibility and Activity of Ceria Nanorods, J. Am. Chem. Soc., 131 (9) (2009) 3140-3141.
  • [13] Zhao J., Bowman L., Zhang X., Vallyathan V., Young S.H., Castranova V., Ding M.,Titanium Dioxide (TiO2) Nanoparticles Induce JB6 Cell Apoptosis Through Activation of the Caspase-8/Bid and Mitochondrial Pathways, J. Toxicol. Environ. Health Part A., 72 (19) (2009) 1141-1149.
  • [14] Liu L., Zhao H., Andino J.M., Li Y., Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry, ACS Catalysis, 2 (8) (2012) 1817-1828.
  • [15] Cao S., Tao F.F., Tang Y., Li Y., Yu J., Size-and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts, Chem. Soc. Rev., 45 (2016) 4747–4765.
  • [16] Hwang, Y.J., Yang, S., Lee, H., Surface analysis of N-doped TiO2 nanorods and their enhanced photocatalytic oxidation activity, Appl. Catal. B Environ., 204 (2017) 209–215.
  • [17] Tian, J., Zhao, Z., Kumar, A., Boughton, R.I., Liu, H., Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: A review. Chem. Soc. Rev., 43 (2014) 6920–6937.
  • [18] Zhang Z., Wang C., Zakaria R., Ying J.Y., Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts, J. Phys. Chem., 102 (1998) 10871–10878.
  • [19] Ohtani B., Kakimoto M., Nishimoto S., Kagiya T., Photocatalytic Reaction of Neat Alcohols by Metal-Loaded Titanium(IV) Oxide Particles, J. Photochem. Photobiol., A, 70 (3) (1993) 265–72.
  • [20] Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Shimohigoshi M., Watanabe T., Photogeneration of Highly Amphiphilic TiO2 Surfaces, Adv. Mater., 10 (2) (1998) 135–38.
  • [21] Shklover V., Nazeeruddin M.K., Zakeeruddin S.M., Barbe C., Kay A., Haibach T., Steurer W., Hermann R., Nissen H.U., Gratzel M., Structure of Nanocrystalline TiO2 powders and Precursor to Their Highly Efficient Photosensitizer, Chem. Mater., 9 (1997) 430–39.
  • [22] Paratsinis S.E., Bai H., Biswas P., Kinetics of Titanium(IV) Chloride Oxidation, J. Am. Ceram. Soc., 73 (7) (1990) 2158–63.
  • [23] Dokan F.K, Kuru M., A new approach to optimize the synthesis parameters of TiO2 microsphere and development of photocatalytic performance, J. Mater. Sci.: Mater. Electron, 32 (2021) 640–65.
  • [24] Yu J., Yu J.C., M. Leung K.P., Ho W., Cheng B., Zhao X., Zhao J., Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania, J. Catal., 217 (2003) 69.
  • [25] Kong M., Li Y., Chen X., Tian T., Fang P., Zheng F., Zhao X., Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency, J. Am. Chem. Soc., 133 (2011) 16414–16417.
  • [26] Sun Q., Xu Y., Evaluating Intrinsic Photocatalytic Activities of Anatase and Rutile TiO2 for Organic Degradation in Water, J. Phys. Chem. C, 114 (2010) 18911 –18918.
  • [27] Kavan L., Gratzel M., Gilbert S. E., Klemenz C., Scheel H.J., Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase., J. Am. Chem. Soc., 118 (1996) 6716– 6723.
  • [28] Batzill M., Fundamental aspects of surface engineering of transition metal oxide photocatalysts, Energy Environ. Sci., 4 (2011) 3275.
  • [29] Fujishima A., Zhang X., Tryk D., TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63 (2008) 515– 582.
  • [30] Yamakata A., Ishibashi T., Onishi H., Time-resolved infrared absorption study of nine TiO2 photocatalysts., Chem. Phys., 339 (2007) 133 – 137.
  • [31] Xu M., Gao Y., Moreno E.M., Kunst M., Muhler M., Wang Y., Idriss H., Wöll C., Photocatalytic Activity of Bulk TiO2 Anatase and Rutile Single Crystals Using Infrared Absorption Spectroscopy, Phys. Rev. Lett., 106 (2011)
  • [32] Luttrell T., Halpegamage S., Tao J., Kramer A. Kramer, Sutter E., Batzill M., Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films, Sci. Rep., 4 (2014) 4043.
  • [33] Sanjinés R., Tang H., Berger H., Gozzo F., Margaritondo G., Lévy F., Electronic structure of anatase TiO2 oxide, J. Appl. Phys., 75 (1994) 2042.
  • [34] Koˇcí K., Obalová L., Matˇejová L., Plachá D., Lacný Z., Jirkovský J., Šolcová O., Effect of TiO2 particle size on the photocatalytic reduction of CO2, Appl. Catal. B Environ., 89 (2009) 494–502.
  • [35] Qi K., Cheng B., Yu J., Ho W., Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Compd., 727 (2017) 792–820.
  • [36] Mamaghani A.H., Haghighat F., Lee C.-S., Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance, Chemosphere, 219 (2019) 804–825.
  • [37] Huang C.Y., Guo R.T., Pan W.G., Tang J.Y., Zhou W.G., Liu X.Y., Qin H., Jia P.Y., One-dimension TiO2 nanostructures with enhanced activity for CO2 photocatalytic reduction, Appl. Surf. Sci., 464 (2019) 534–543.
  • [38] Liu N., Chen X., Zhang J., Schwank J.W., A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications, Catal. Today, 225 (2014) 34–51.

Year 2022, Volume 43, Issue 3, 409 - 415, 30.09.2022
https://doi.org/10.17776/csj.1107688

Abstract

References

  • [1] Ebrahimi M., Zakery A., Karimipour M., Molaei M., Nonlinear optical properties and optical limiting measurements of graphene oxide - Ag@TiO2 compounds, Opt. Mater., 57 (2016) 146-152.
  • [2] Le L., Xu J., Zhou Z., Wang H., Xiong R., Shi J., Effect of oxygen vacancies and Ag deposition on the magnetic properties of Ag/N co-doped TiO2 single-crystal films, Mater. Res. Bull., 102 (2018) 337-341.
  • [3] An G., Ma W., Sun Z., Liu Z., Han B., Miao S., Miao Z., Ding K., ,Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation, Carbon 45(9) (2007) 1795-1801.
  • [4] Wang T., Wei J., Shi H., Zhou M., Zhang Y., Chen Q., Zhang Z., Physica E., 86 (2017) 103-110.
  • [5] Liu H., Dong X., Wang X., Sun C., Li J., Zhu Z., A green and direct synthesis of graphene oxide encapsulated TiO2 core/shell structures with enhanced photoactivity, Chem. Eng. J., 230 (2013) 279-285.
  • [6] Wang X., Li Y., Rare-Earth-Compound Nanowires, Nanotubes, and Fullerene-Like Nanoparticles: Synthesis, Characterization, and Properties., Chem Eur J., 9 (22) (2003) 5627-5635.
  • [7] Miao-Miao Y., Zhong-Lin C., Wen-Shou W., Liang Z., Ji-Min S., Template-free Hydrothermal Preparation of Mesoporous TiO2 Microspheres on a Large Scale., Chemistry Letters, 37 (9) (2008) 938-939.
  • [8] Wang W.S, Zhen L, Xu C.Y, Zhang B.Y, Shao W.Z., Room Temperature Synthesis of Hollow CdMoO4 Microspheres by a Surfactant-Free Aqueous Solution Route., J Phys Chem., 110 46 (2006) 23154–23158.
  • [9] Zhang Q., Ge J.P., Goebl J., Hu Y.X., Lu Z.D., Yin Y., Rattle-type silica colloidal particles prepared by a surface-protected etching process.,Nano Res., 2 (2009) 583–591.
  • [10] Fujishima A., Rao T.N., Tryk D.A., TiO2 Photocatalysts and Diamond Electrodes, Electrochimica Acta, 45 (28) (2000) 4683-4690.
  • [11] Zhao, J., Bowman L., Zhang X., Vallyathan V., Young S.H., Castranova V., ve Ding M., Titanium Dioxide (TiO2) Nanoparticles Induce JB6 Cell Apoptosis Through Activation of the Caspase-8/Bid and Mitochondrial Pathways, J.Toxicol. Environ. Health Part A.,72 (19) (2009) 1141-1149.
  • [12] Liu X., Zhou K., Wang L., Wang B., Li Y., Oxygen Vacancy Clusters Promoting Reducibility and Activity of Ceria Nanorods, J. Am. Chem. Soc., 131 (9) (2009) 3140-3141.
  • [13] Zhao J., Bowman L., Zhang X., Vallyathan V., Young S.H., Castranova V., Ding M.,Titanium Dioxide (TiO2) Nanoparticles Induce JB6 Cell Apoptosis Through Activation of the Caspase-8/Bid and Mitochondrial Pathways, J. Toxicol. Environ. Health Part A., 72 (19) (2009) 1141-1149.
  • [14] Liu L., Zhao H., Andino J.M., Li Y., Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry, ACS Catalysis, 2 (8) (2012) 1817-1828.
  • [15] Cao S., Tao F.F., Tang Y., Li Y., Yu J., Size-and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts, Chem. Soc. Rev., 45 (2016) 4747–4765.
  • [16] Hwang, Y.J., Yang, S., Lee, H., Surface analysis of N-doped TiO2 nanorods and their enhanced photocatalytic oxidation activity, Appl. Catal. B Environ., 204 (2017) 209–215.
  • [17] Tian, J., Zhao, Z., Kumar, A., Boughton, R.I., Liu, H., Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: A review. Chem. Soc. Rev., 43 (2014) 6920–6937.
  • [18] Zhang Z., Wang C., Zakaria R., Ying J.Y., Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts, J. Phys. Chem., 102 (1998) 10871–10878.
  • [19] Ohtani B., Kakimoto M., Nishimoto S., Kagiya T., Photocatalytic Reaction of Neat Alcohols by Metal-Loaded Titanium(IV) Oxide Particles, J. Photochem. Photobiol., A, 70 (3) (1993) 265–72.
  • [20] Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Shimohigoshi M., Watanabe T., Photogeneration of Highly Amphiphilic TiO2 Surfaces, Adv. Mater., 10 (2) (1998) 135–38.
  • [21] Shklover V., Nazeeruddin M.K., Zakeeruddin S.M., Barbe C., Kay A., Haibach T., Steurer W., Hermann R., Nissen H.U., Gratzel M., Structure of Nanocrystalline TiO2 powders and Precursor to Their Highly Efficient Photosensitizer, Chem. Mater., 9 (1997) 430–39.
  • [22] Paratsinis S.E., Bai H., Biswas P., Kinetics of Titanium(IV) Chloride Oxidation, J. Am. Ceram. Soc., 73 (7) (1990) 2158–63.
  • [23] Dokan F.K, Kuru M., A new approach to optimize the synthesis parameters of TiO2 microsphere and development of photocatalytic performance, J. Mater. Sci.: Mater. Electron, 32 (2021) 640–65.
  • [24] Yu J., Yu J.C., M. Leung K.P., Ho W., Cheng B., Zhao X., Zhao J., Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania, J. Catal., 217 (2003) 69.
  • [25] Kong M., Li Y., Chen X., Tian T., Fang P., Zheng F., Zhao X., Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency, J. Am. Chem. Soc., 133 (2011) 16414–16417.
  • [26] Sun Q., Xu Y., Evaluating Intrinsic Photocatalytic Activities of Anatase and Rutile TiO2 for Organic Degradation in Water, J. Phys. Chem. C, 114 (2010) 18911 –18918.
  • [27] Kavan L., Gratzel M., Gilbert S. E., Klemenz C., Scheel H.J., Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase., J. Am. Chem. Soc., 118 (1996) 6716– 6723.
  • [28] Batzill M., Fundamental aspects of surface engineering of transition metal oxide photocatalysts, Energy Environ. Sci., 4 (2011) 3275.
  • [29] Fujishima A., Zhang X., Tryk D., TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63 (2008) 515– 582.
  • [30] Yamakata A., Ishibashi T., Onishi H., Time-resolved infrared absorption study of nine TiO2 photocatalysts., Chem. Phys., 339 (2007) 133 – 137.
  • [31] Xu M., Gao Y., Moreno E.M., Kunst M., Muhler M., Wang Y., Idriss H., Wöll C., Photocatalytic Activity of Bulk TiO2 Anatase and Rutile Single Crystals Using Infrared Absorption Spectroscopy, Phys. Rev. Lett., 106 (2011)
  • [32] Luttrell T., Halpegamage S., Tao J., Kramer A. Kramer, Sutter E., Batzill M., Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films, Sci. Rep., 4 (2014) 4043.
  • [33] Sanjinés R., Tang H., Berger H., Gozzo F., Margaritondo G., Lévy F., Electronic structure of anatase TiO2 oxide, J. Appl. Phys., 75 (1994) 2042.
  • [34] Koˇcí K., Obalová L., Matˇejová L., Plachá D., Lacný Z., Jirkovský J., Šolcová O., Effect of TiO2 particle size on the photocatalytic reduction of CO2, Appl. Catal. B Environ., 89 (2009) 494–502.
  • [35] Qi K., Cheng B., Yu J., Ho W., Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Compd., 727 (2017) 792–820.
  • [36] Mamaghani A.H., Haghighat F., Lee C.-S., Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance, Chemosphere, 219 (2019) 804–825.
  • [37] Huang C.Y., Guo R.T., Pan W.G., Tang J.Y., Zhou W.G., Liu X.Y., Qin H., Jia P.Y., One-dimension TiO2 nanostructures with enhanced activity for CO2 photocatalytic reduction, Appl. Surf. Sci., 464 (2019) 534–543.
  • [38] Liu N., Chen X., Zhang J., Schwank J.W., A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications, Catal. Today, 225 (2014) 34–51.

Details

Primary Language English
Subjects Materials Science, Multidisciplinary
Journal Section Natural Sciences
Authors

Fatma KILIÇ DOKAN> (Primary Author)
MUSTAFA ÇIKRIKÇIOĞLU VOCATIONAL SCHOOL
0000-0002-5355-2904
Türkiye

Publication Date September 30, 2022
Application Date April 22, 2022
Acceptance Date July 11, 2022
Published in Issue Year 2022, Volume 43, Issue 3

Cite

APA Kılıç Dokan, F. (2022). Investigation of the Effect of Different Synthesis Methods on the Photocatalytic Activity of TiO2: Comparison of Rutile and Anatase TiO2 . Cumhuriyet Science Journal , 43 (3) , 409-415 . DOI: 10.17776/csj.1107688