Research Article
BibTex RIS Cite

Influence of the Core Pillar Height on the Bandgap Characteristics of Piezoelectric Phononic Crystals with Ring-Shaped Grooves

Year 2022, Volume: 43 Issue: 2, 346 - 350, 29.06.2022
https://doi.org/10.17776/csj.1104315

Abstract

Dispersion profiles and surface acoustic wave attenuation characteristics of ring-shaped phononic crystals are investigated as a function of the core pillar height. Finite element method simulations are carried out for both band analyses and transmission spectra calculations. The results reveal that increasing core pillar height results in a decrement in the local resonance band frequency and the corresponding transmission peaks. The obtained dispersion profiles show that the phononic crystal bandgap also expands from 6 MHz to 11 MHz while the pillar height increases from 5 um to 7 um. Similar characteristics are also seen in the transmission spectra for the varying core pillar heights of the ring-shaped periodic grooves. In addition, surface acoustic wave attenuation competency depends on the core pillar height. The frequencies where the investigated phononic crystals are functional can be tuned by adjusting the core pillar height.

Project Number

120F337

References

  • [1] Collins D.J., Devendran C., Ma Z., Ng, J.W., Neild A., Ai Y., Acoustic tweezers via sub–time-of-flight regime surface acoustic waves, Sci. Adv., 2 (7) (2016) e1600089.
  • [2] Topaltzikis D., Wielunski M., Hörner A.L., Küß M., Reiner A., Grünwald T., Schreck M., Wixforth A., Rühm W., Detection of x rays by a surface acoustic delay line in contact with a diamond crystal, Appl. Phys. Lett., 118 (13) (2021) 133501.
  • [3] Su R., Shen J., Lu Z., Xu H., Niu Q., Xu Z., Zeng F., Song C., Wang W., Fu S., Pan F., Wideband and Low-Loss Surface Acoustic Wave Filter Based on 15° YX-LiNbO₃/SiO₂/Si Structure, IEEE Electr. Device L., 42 (3) (2021) 438-441.
  • [4] Su R., Fu S., Shen J., Lu Z., Xu H., Yang M., Zeng F., Song C., Wang W., Pan F., Power Durability Enhancement and Failure Analysis of TC-SAW Filter With Ti/Cu/Ti/Cu/Ti Electrodes, IEEE T. Device Mat. Re., 21 (3) (2021) 365-371.
  • [5] Xie Y., Mao Z., Bachman H., Li P., Zhang P., Ren L., Wu M., Huang T.J., Acoustic Cell Separation Based On Biophysical Properties., J. Biomechanical Eng., 142 (3) (2020) 031005-1-9.
  • [6] Qian J., Ren J., Liu Y., Lam R.H.W., Lee J.E.-Y., A two-chip acoustofluidic particle manipulation platform with a detachable and reusable surface acoustic wave device, Analyst, 145 (23) (2020) 7752-7758.
  • [7] Agostini M., Greco G., Cecchini M., Full-SAW Microfluidics-Based Lab-on-a-Chip for Biosensing, IEEE Access, 7 (2019) 70901-70909.
  • [8] Kumar A., Prajesh R., The Potential of Acoustic Wave Devices for Gas Sensing Applications, Sens. Actuator A-Phys. Physical, 339 (2022) 113498.
  • [9] Hekiem N.L.L., Ralib A.A.M., Hattar M.A. bt M., Ahmad F., Nordin A.N., Rahim,R.A., Za’bah,N.F., Advanced vapour sensing materials, Existing and latent to acoustic wave sensors for VOCs detection as the potential exhaled breath biomarkers for lung cancer, Sens. Actuator A-Phys., 329 (2021) 112792.
  • [10] Wang Y., Wang,., Liu, W., Chen D., Wu C., Xie J., An aerosol sensor for PM1 concentration detection based on 3D printed virtual impactor and SAW sensor, Sens. Actuator A-Phys., 288 (2019) 67-74.
  • [11] Zhang X.-F., Zhang Z.-W., He Y.-L., Liu Y.-X., L, S., Fang J.-Y., Zhang X.-A., Peng G., Sniffing lung cancer related biomarkers using an oxidized graphene SAW sensor Frontiers of Physics, 11 (2015) 2.
  • [12] Kidakova A., Boroznjak R., Reut J., Öpik A., Saarma M., Syritski V., Molecularly imprinted polymer-based SAW sensor for label-free detection of cerebral dopamine neurotrophic factor protein, Sens. Actuator B-Chem., 308 (2020) 127708.
  • [13] Kushwaha M.S., Halevi P., Martínez G., Dobrzynski L., Djafari-Rouhani, B., Theory of acoustic band structure of periodic elastic composites Phys. Rev. B, 49 (4) (1994) 2313-2322.
  • [14] Sigalas M., Economou, E.N., Band structure of elastic waves in two dimensional systems, Solid State Commun., 86 (3) (1993) 141-143.
  • [15] Mead D.M., Wave Propagatıon In Contınuous Perıodıc Structures, Research Contrıbutıons From Southampton, 1964–1995, J.Sound Vibr., 190 (3) (1996) 495-524.
  • [16] Kushwaha M.S., Halevi P., Dobrzynski L., Djafari-Rouhani B., Acoustic band structure of periodic elastic composites, Phys.Rev. Lett., 71 (13) (1993) 2022-2025.
  • [17] Achaoui Y., Khelif A., Benchabane S., Robert L., Laude V., Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars, Phys. Rev. B, 83 (10) (2011) 104201.
  • [18] Achaoui Y., Laude V., Benchabane S., Khelif A., Local resonances in phononic crystals and in random arrangements of pillars on a surface, J. Appl. Phys .114 (10) (2013) 104503.
  • [19] Jin Y., Pennec Y., Bonello B., Honarvar H., Dobrzynski L., Djafari-Rouhani B., Hussein M.I., Physics of surface vibrational resonances, pillared phononic crystals, metamaterials, and metasurfaces, Rep. Prog. Phys., 84 (8) (2021) 086502.
  • [20] Vasseur J.O., Hladky-Hennion A.-C., Djafari-Rouhani B., Duval F., Dubus,B., Pennec Y., Deymier P.A., Waveguiding in two-dimensional piezoelectric phononic crystal plates, J. Appl. Phys., 101 (11) (2007) 114904.
  • [21] Oh J.H., Lee I.K., M, P.S., Kim Y.Y., Active wave-guiding of piezoelectric phononic crystals, Appl. Phys. Lett., 99(8) (2011) 083505.
  • [22] Zhang Z.-D., Liu F.-K., Yu S.-Y., Lu M.-H, Chen Y.-F., An integrable and configurable phononic beam splitter based on self-collimated surface acoustic waves, Appl. Phys. Express, 13 (4) (2020) 044002.
  • [23]Schmidt M.-P., Oseev A., Lucklum R., Zubtsov M., Hirsch S., SAW based phononic crystal sensor, technological challenges and solutions, Microsyst. Technol., 22 (7) (2016) 1593-1599.
  • [24]Gharibi H., Khaligh A., Bahrami A., Ghavifekr H.B., A very high sensitive interferometric phononic crystal liquid sensor, J. Mol. Liq., 296 (2019) 111878.
  • [25]Gharibi H.,Mehaney A., Two-dimensional phononic crystal sensor for volumetric detection of hydrogen peroxide (H2O2) in liquids, Phys. E Low-dimensional Syst. Nanostructures, 126 (2021) 114429.
  • [26]Cao D., Hu W., Gao Y., Guo X., Vibration and energy harvesting performance of a piezoelectric phononic crystal beam, Smart Mater. Struct., 28 (8) (2019) 085014.
  • [27] Bourquin Y., Wilson R., Zhang Y., Reboud J.,Cooper J.M., Phononic Crystals for Shaping Fluids, Adv. Mater., 23 (12) (2011) 1458-1462.
  • [28]Ash B.J., Worsfold S.R., Vukusic P.,Nash G.R., A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves, Nature Communications, 8 (1) (2017) 174.
  • [29]Ozgur Y., Birol O., Dong X., Srinivas S., Conicity and depth effects on the optical transmission of lithium niobate photonic crystals patterned by focused ion beam, Opt. Mater. Express, 1 (7) (2011) 1262-1271.
  • [30]Levy M., Bass H., Stern R., Modern Acoustical Techniques for the Measurement of Mechanical Properties, Elsevier Science, (2001).
  • [31] Laurell T., Lenshof A., Microscale Acoustofluidics, Royal Society of Chemistry, (2014).
  • [32]Berenge, J.-P., Perfectly matched layer for the FDTD solution of wave-structure interaction problems, IEEE T. Antenn. Propag., 44 (1) (1996) 110-117.
  • [33]Pennec Y., Djafari-Rouhani B., Larabi H., Vasseur J.O., Hladky-Hennion A.C., Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate, Phys. Rev. B, 78 (10) (2008) 104105.
Year 2022, Volume: 43 Issue: 2, 346 - 350, 29.06.2022
https://doi.org/10.17776/csj.1104315

Abstract

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Project Number

120F337

Thanks

Prof. Dr. Ahmet Çiçek ve Prof. Dr. Ayşe Erol' a eşsiz katkılarından dolayı teşekkürlerimi sunarım.

References

  • [1] Collins D.J., Devendran C., Ma Z., Ng, J.W., Neild A., Ai Y., Acoustic tweezers via sub–time-of-flight regime surface acoustic waves, Sci. Adv., 2 (7) (2016) e1600089.
  • [2] Topaltzikis D., Wielunski M., Hörner A.L., Küß M., Reiner A., Grünwald T., Schreck M., Wixforth A., Rühm W., Detection of x rays by a surface acoustic delay line in contact with a diamond crystal, Appl. Phys. Lett., 118 (13) (2021) 133501.
  • [3] Su R., Shen J., Lu Z., Xu H., Niu Q., Xu Z., Zeng F., Song C., Wang W., Fu S., Pan F., Wideband and Low-Loss Surface Acoustic Wave Filter Based on 15° YX-LiNbO₃/SiO₂/Si Structure, IEEE Electr. Device L., 42 (3) (2021) 438-441.
  • [4] Su R., Fu S., Shen J., Lu Z., Xu H., Yang M., Zeng F., Song C., Wang W., Pan F., Power Durability Enhancement and Failure Analysis of TC-SAW Filter With Ti/Cu/Ti/Cu/Ti Electrodes, IEEE T. Device Mat. Re., 21 (3) (2021) 365-371.
  • [5] Xie Y., Mao Z., Bachman H., Li P., Zhang P., Ren L., Wu M., Huang T.J., Acoustic Cell Separation Based On Biophysical Properties., J. Biomechanical Eng., 142 (3) (2020) 031005-1-9.
  • [6] Qian J., Ren J., Liu Y., Lam R.H.W., Lee J.E.-Y., A two-chip acoustofluidic particle manipulation platform with a detachable and reusable surface acoustic wave device, Analyst, 145 (23) (2020) 7752-7758.
  • [7] Agostini M., Greco G., Cecchini M., Full-SAW Microfluidics-Based Lab-on-a-Chip for Biosensing, IEEE Access, 7 (2019) 70901-70909.
  • [8] Kumar A., Prajesh R., The Potential of Acoustic Wave Devices for Gas Sensing Applications, Sens. Actuator A-Phys. Physical, 339 (2022) 113498.
  • [9] Hekiem N.L.L., Ralib A.A.M., Hattar M.A. bt M., Ahmad F., Nordin A.N., Rahim,R.A., Za’bah,N.F., Advanced vapour sensing materials, Existing and latent to acoustic wave sensors for VOCs detection as the potential exhaled breath biomarkers for lung cancer, Sens. Actuator A-Phys., 329 (2021) 112792.
  • [10] Wang Y., Wang,., Liu, W., Chen D., Wu C., Xie J., An aerosol sensor for PM1 concentration detection based on 3D printed virtual impactor and SAW sensor, Sens. Actuator A-Phys., 288 (2019) 67-74.
  • [11] Zhang X.-F., Zhang Z.-W., He Y.-L., Liu Y.-X., L, S., Fang J.-Y., Zhang X.-A., Peng G., Sniffing lung cancer related biomarkers using an oxidized graphene SAW sensor Frontiers of Physics, 11 (2015) 2.
  • [12] Kidakova A., Boroznjak R., Reut J., Öpik A., Saarma M., Syritski V., Molecularly imprinted polymer-based SAW sensor for label-free detection of cerebral dopamine neurotrophic factor protein, Sens. Actuator B-Chem., 308 (2020) 127708.
  • [13] Kushwaha M.S., Halevi P., Martínez G., Dobrzynski L., Djafari-Rouhani, B., Theory of acoustic band structure of periodic elastic composites Phys. Rev. B, 49 (4) (1994) 2313-2322.
  • [14] Sigalas M., Economou, E.N., Band structure of elastic waves in two dimensional systems, Solid State Commun., 86 (3) (1993) 141-143.
  • [15] Mead D.M., Wave Propagatıon In Contınuous Perıodıc Structures, Research Contrıbutıons From Southampton, 1964–1995, J.Sound Vibr., 190 (3) (1996) 495-524.
  • [16] Kushwaha M.S., Halevi P., Dobrzynski L., Djafari-Rouhani B., Acoustic band structure of periodic elastic composites, Phys.Rev. Lett., 71 (13) (1993) 2022-2025.
  • [17] Achaoui Y., Khelif A., Benchabane S., Robert L., Laude V., Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars, Phys. Rev. B, 83 (10) (2011) 104201.
  • [18] Achaoui Y., Laude V., Benchabane S., Khelif A., Local resonances in phononic crystals and in random arrangements of pillars on a surface, J. Appl. Phys .114 (10) (2013) 104503.
  • [19] Jin Y., Pennec Y., Bonello B., Honarvar H., Dobrzynski L., Djafari-Rouhani B., Hussein M.I., Physics of surface vibrational resonances, pillared phononic crystals, metamaterials, and metasurfaces, Rep. Prog. Phys., 84 (8) (2021) 086502.
  • [20] Vasseur J.O., Hladky-Hennion A.-C., Djafari-Rouhani B., Duval F., Dubus,B., Pennec Y., Deymier P.A., Waveguiding in two-dimensional piezoelectric phononic crystal plates, J. Appl. Phys., 101 (11) (2007) 114904.
  • [21] Oh J.H., Lee I.K., M, P.S., Kim Y.Y., Active wave-guiding of piezoelectric phononic crystals, Appl. Phys. Lett., 99(8) (2011) 083505.
  • [22] Zhang Z.-D., Liu F.-K., Yu S.-Y., Lu M.-H, Chen Y.-F., An integrable and configurable phononic beam splitter based on self-collimated surface acoustic waves, Appl. Phys. Express, 13 (4) (2020) 044002.
  • [23]Schmidt M.-P., Oseev A., Lucklum R., Zubtsov M., Hirsch S., SAW based phononic crystal sensor, technological challenges and solutions, Microsyst. Technol., 22 (7) (2016) 1593-1599.
  • [24]Gharibi H., Khaligh A., Bahrami A., Ghavifekr H.B., A very high sensitive interferometric phononic crystal liquid sensor, J. Mol. Liq., 296 (2019) 111878.
  • [25]Gharibi H.,Mehaney A., Two-dimensional phononic crystal sensor for volumetric detection of hydrogen peroxide (H2O2) in liquids, Phys. E Low-dimensional Syst. Nanostructures, 126 (2021) 114429.
  • [26]Cao D., Hu W., Gao Y., Guo X., Vibration and energy harvesting performance of a piezoelectric phononic crystal beam, Smart Mater. Struct., 28 (8) (2019) 085014.
  • [27] Bourquin Y., Wilson R., Zhang Y., Reboud J.,Cooper J.M., Phononic Crystals for Shaping Fluids, Adv. Mater., 23 (12) (2011) 1458-1462.
  • [28]Ash B.J., Worsfold S.R., Vukusic P.,Nash G.R., A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves, Nature Communications, 8 (1) (2017) 174.
  • [29]Ozgur Y., Birol O., Dong X., Srinivas S., Conicity and depth effects on the optical transmission of lithium niobate photonic crystals patterned by focused ion beam, Opt. Mater. Express, 1 (7) (2011) 1262-1271.
  • [30]Levy M., Bass H., Stern R., Modern Acoustical Techniques for the Measurement of Mechanical Properties, Elsevier Science, (2001).
  • [31] Laurell T., Lenshof A., Microscale Acoustofluidics, Royal Society of Chemistry, (2014).
  • [32]Berenge, J.-P., Perfectly matched layer for the FDTD solution of wave-structure interaction problems, IEEE T. Antenn. Propag., 44 (1) (1996) 110-117.
  • [33]Pennec Y., Djafari-Rouhani B., Larabi H., Vasseur J.O., Hladky-Hennion A.C., Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate, Phys. Rev. B, 78 (10) (2008) 104105.
There are 33 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Furkan Kuruoğlu 0000-0002-5314-4441

Project Number 120F337
Publication Date June 29, 2022
Submission Date April 16, 2022
Acceptance Date June 16, 2022
Published in Issue Year 2022Volume: 43 Issue: 2

Cite

APA Kuruoğlu, F. (2022). Influence of the Core Pillar Height on the Bandgap Characteristics of Piezoelectric Phononic Crystals with Ring-Shaped Grooves. Cumhuriyet Science Journal, 43(2), 346-350. https://doi.org/10.17776/csj.1104315