Research Article
BibTex RIS Cite

The Quality of Yıldız River Water and Determining Trace Elements by Liquid-Liquid Micro-Extraction Analytical Method

Year 2022, Volume: 43 Issue: 2, 201 - 210, 29.06.2022
https://doi.org/10.17776/csj.1056779

Abstract

The present study was carried out between September 2019 and March 2020 in Yıldız River, which is located within the borders of the Yıldızeli district of Sivas province and used for agricultural irrigation purposes, to determine the chemical characteristics of river water and the trace elements. Water’s alkalinity, chemical oxygen demand (COD), chloride (Cl-), calcium (Ca2+), total hardness, total phosphate (PO4-P), dissolved reactive phosphate (SRP), ammonium nitrogen (NH4-N), nitrate-nitrogen (NO3-N), nitrite-nitrogen (NO2-N), soluble reactive silica (SiO2-Si) concentrations, as well as trace elements (ferrous, lead, cadmium). Moreover, during the sampling process, also the water temperature, dissolved oxygen, conductivity, pH, and total dissolved solids measurements were performed. Before using the flame atomic absorption spectrometer (FAAS) in determining the Fe, Pb, and Cd in water samples, a simple, environment-friendly, and new ultrasonic liquid-liquid micro-extraction method was suggested. Several parameters (pH, ionic fluid amount, dispersive solvent volume, and temperature) influencing the performance of micro-extraction were optimized. Under the optimized conditions, the detection thresholds for Fe (II), Pb (II), and Cd (II) were found to be 0.6, 0.15, and 1.5 μg L-1, respectively.

Project Number

RGD-018

References

  • [1] Sayın B.T.C., Ministry of agriculture, forestry and rural affairs, 2nd Bandırma Bird Sanctuary and Bird Lake Symposium, (1987) 86-88.
  • [2] Tekinalp O., Investigation of pollution and polluting factors of Yenişehir lake (Reyhanlı / HATAY), Dissertation, Mustafa Kemal University, (2005).
  • [3] Moss B., Eutrophication and restoration of shallow and deep lakes, shallow lake wetlands, ecology, eutrophication and restoration. International Workshop, ODTÜ, (2001), 3-31-32.
  • [4] Gündoğdu V., Özkan E.Y., Design of monitoring network and determination of water quality variables in Küçük Menderes River, Ege J. Fisheries Aquatic Sci., 23 (3-4) (2006) 361-369.
  • [5] Kumbur H., Özsoy H.D., Özer Z., Determination of the effects of chemicals used in agricultural area on water quality in Mersin Province, Ecology, 17(68) (2008) 54-58
  • [6] Temamoğulları F., Dinçoğlu A.H., Selenium and zinc levels in well water in Sanliurfa and vicinity. Kafkas Uni. J .Faculty Vet. Med-Us, 16 (2) (2010) 199-203.
  • [7] Türkmen A., Türkmen M., Tepe Y., Naz M., Heavy metal concentrations in sea water of Iskenderun Bayand correlations between temperature, pH, oxygen and salinity values, Turkish J. Aquatic Life, 2 (3) (2004) 400-407.
  • [8] Kahraman T., Alemdar S., Alişarlı M., Ağaoğlu S., Heavy metal levels in drinking water of Bitlis province, Eurasian J. Vet. Sci., 28 (2012) 164-171.
  • [9] Chirita L., Covaci E., Mot A., Ponta M., Gandeac A., Frentiu T., Determination of selenium in food and environmental samples by hydride generation high-resolution continuum source quartz furnace atomic absorption spectrometry, J. Anal. Atom Spectrom, 36 (2021) 267-272.
  • [10] Fernández Z.H., Álvarez J.R.E., Montero A., Ugarte Á.O.M., González I.P., González M.R., Júnior J.A.D.S., Freire M.B.C., Junior B. & O. P. D. S., Metal contaminants in rice from Cuba analyzed by ICP-MS, ICP-AES and CVAAS, Food Addıt Contam. B., 14 (2021) 59–65.
  • [11] Ilin D.V., Pletnev I.V., Extraction and ICP-OES determination of heavy metals using tetrabutylammonium bromide aqueous biphasic system and oleophilic collector, Talanta, 221 (2021) 121485.
  • [12] Masac J., Machynak L., Lovic J., Beinrohr E., Cacho F., On-line electrochemical preconcentration and electrochemical hydride generation for determination of antimony by high-resolution continuum source atomic absorption spectrometry, Talanta, 223 (2021) 121767.
  • [13] Wei Y., Zhang J., Qiu S., Huang Q., Yuan L., Chen L., Dai T., Tu T., Zhang B., Yan H., Li W., Selenium species determination in se-enriched grain crops with foliar spray of sodium selenite by IP-RP-HPLC-UV-HG-AFS, Food Anal. Method, 14 (2021) 1345–1358.
  • [14] Azooz E.A., Wannas F.A., Jawad S. K., Developed cloud point extraction coupled with onium system for separation and determination cobalt in biological samples, Res. J. Pharm. Tech., 14(2) (2021) 594-598.
  • [15] Juretic H., Montalbo-Lomboy M., Van Leeuwen J.H., Cooper W.J., Grewell D., Hydroxyl radical formation in batch and continuous flow ultrasonic systems. Ultrason. Sonochem., 22 (2015) 600-606.
  • [16] Feist B., Mikula B., Preconcentration of some metal ions with lanthanum-8-hydroxyquinoline co-precipitation system, Food Chem., 147 (2014) 225-229
  • [17] Fouladvand M.T., Asadi J., Lotfollahi M.N., Simulation and optimization of aromatic extraction from lube oil cuts by liquid-liquid extraction, Chem .Eng. Res. Des., 165 (2021) 118-128.
  • [18] Mandlate J.S., Soares B.M., Seeger T.S., Vecchia P.D., Mello P.A., Flores E.M.M., Duarte F.A., Determination of cadmium and lead at sub-ppt level in soft drinks: An efficient combination between dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry, Food Chem., 221 (2017) 907–912.
  • [19] Song X., Wu J., Pang J., Wu Y., Huang X., Task specific monolith for magnetic field-reinforced in-tube solid phase microextraction of mercury species in waters prior to online HPLC quantification, J. Hazard Mater., 411 (2021) 125141.
  • [20] Ji Y., Zhao M., Li A., Zhao L., Hydrophobic deep eutectic solvent-based ultrasonic-assisted dispersive liquid-liquid microextraction for preconcentration and determination of trace cadmium and arsenic in wine samples, Microchem. J., 164 (2021) 105974.
  • [21] Becker R., Heyn L., Jung C., Indoor exposure to airborne PAHs: A comparison of stir bar sorptive extraction and pump sampling, Authorea Preprints 14 January 2021 - authorea.com.
  • [22] Melnyk A., Wolska L., Namieśnik J., Coacervativeextraction as a green technique for sample preparation for the analysis of organic compounds, J. Chromatogr. A., 1339 (2014) 1-12.
  • [23] Mogaddam M.R.A., Farajzadeh M. A., Mohebbi A., Nemati M., Hollow fiber–liquid phase microextraction method based on a new deep eutectic solvent for extraction and derivatization of some phenolic compounds in beverage samples packed in plastics, Talanta, 216 (2020) 120986.
  • [24] Armand M., Endres F., MacFarlane D.R., Ohno H., Scrosati B., Ionic-liquid materials for the electrochemical challenges of the future, Mater. Sustain. Energy, (2010) https://doi.org/10.1142/9789814317665_0020.
  • [25] Ferreira V.J., Almeida J.S., Lemos V.A., Oliveira O.M.C., Garcia K.S., Teixeira L.S.G., Determination of Cu, Ni, Mn, and Pb in diesel oil samples using reversed-phase vortex-assisted liquid-liquid microextraction associated with energy dispersive X-ray fluorescence spectrometry, Talanta, 222 (2021) 121514.
  • [26] Yıldırım M., Yılmaz I., Investigation of the usefullness of the Yıldız Irmak sediments as the cement aggregates, Cumhuriyet Earth Sci., 19 (2002) 181-192.
  • [27] Clesceri S., Greenberg E.A., Eaton D., Standard methods for examination of water and wastewater. 20. Eddition, American Public Health Association,(1999).
  • [28] Murphy J., Riley J.P., A single-solution method for the determination of soluble phosphate in sea water, J. Marine Biol. Assoc. UK., 37 (1958) 9-14.
  • [29] Mackeret F.J.H., Heron J., Talling C.F., Water analysis: some revised methods for limnologists. Sci. pub. Freshwater Biol. Assoc., (1978) 1-120.
  • [30] Dişli M., Akkurt F., Alıcılar A., Evaluatıon on water of Şanlıurfa balıklıgöl concernıng chemıcalparameters, J. Fac. Eng. Arch. Gazi Univ., 19 (3) (2004) 287-294.
  • [31] Mullin J.D., Riley J.P., The colorimetric determination of silica in water. part 3. method for determining the total silica content, Analyst. Lond., 88 (1955) 446-455.
  • [32] West D.M., Skoog D.A., Holler F.J., Crouch S.R., Analitik Kimya Temel İlkeler. Esma Kılıç, Hamza Yılmaz (ed) Bilim yayınları, Ankara (2009).
  • [33] Anonymous (2008) Water Pollution Control Regulation. 26786
  • [34] Juretic H., Montalbo-Lomboy M., Van Leeuwen J.H., Cooper W.J., Grewell D., Hydroxyl radical formation in batch and continuous flow ultrasonic systems, Ultrason Sonochem., 22 (2015) 600-606.
Year 2022, Volume: 43 Issue: 2, 201 - 210, 29.06.2022
https://doi.org/10.17776/csj.1056779

Abstract

Supporting Institution

Sivas Cumhuriyet Üniversitesi CÜBAP

Project Number

RGD-018

References

  • [1] Sayın B.T.C., Ministry of agriculture, forestry and rural affairs, 2nd Bandırma Bird Sanctuary and Bird Lake Symposium, (1987) 86-88.
  • [2] Tekinalp O., Investigation of pollution and polluting factors of Yenişehir lake (Reyhanlı / HATAY), Dissertation, Mustafa Kemal University, (2005).
  • [3] Moss B., Eutrophication and restoration of shallow and deep lakes, shallow lake wetlands, ecology, eutrophication and restoration. International Workshop, ODTÜ, (2001), 3-31-32.
  • [4] Gündoğdu V., Özkan E.Y., Design of monitoring network and determination of water quality variables in Küçük Menderes River, Ege J. Fisheries Aquatic Sci., 23 (3-4) (2006) 361-369.
  • [5] Kumbur H., Özsoy H.D., Özer Z., Determination of the effects of chemicals used in agricultural area on water quality in Mersin Province, Ecology, 17(68) (2008) 54-58
  • [6] Temamoğulları F., Dinçoğlu A.H., Selenium and zinc levels in well water in Sanliurfa and vicinity. Kafkas Uni. J .Faculty Vet. Med-Us, 16 (2) (2010) 199-203.
  • [7] Türkmen A., Türkmen M., Tepe Y., Naz M., Heavy metal concentrations in sea water of Iskenderun Bayand correlations between temperature, pH, oxygen and salinity values, Turkish J. Aquatic Life, 2 (3) (2004) 400-407.
  • [8] Kahraman T., Alemdar S., Alişarlı M., Ağaoğlu S., Heavy metal levels in drinking water of Bitlis province, Eurasian J. Vet. Sci., 28 (2012) 164-171.
  • [9] Chirita L., Covaci E., Mot A., Ponta M., Gandeac A., Frentiu T., Determination of selenium in food and environmental samples by hydride generation high-resolution continuum source quartz furnace atomic absorption spectrometry, J. Anal. Atom Spectrom, 36 (2021) 267-272.
  • [10] Fernández Z.H., Álvarez J.R.E., Montero A., Ugarte Á.O.M., González I.P., González M.R., Júnior J.A.D.S., Freire M.B.C., Junior B. & O. P. D. S., Metal contaminants in rice from Cuba analyzed by ICP-MS, ICP-AES and CVAAS, Food Addıt Contam. B., 14 (2021) 59–65.
  • [11] Ilin D.V., Pletnev I.V., Extraction and ICP-OES determination of heavy metals using tetrabutylammonium bromide aqueous biphasic system and oleophilic collector, Talanta, 221 (2021) 121485.
  • [12] Masac J., Machynak L., Lovic J., Beinrohr E., Cacho F., On-line electrochemical preconcentration and electrochemical hydride generation for determination of antimony by high-resolution continuum source atomic absorption spectrometry, Talanta, 223 (2021) 121767.
  • [13] Wei Y., Zhang J., Qiu S., Huang Q., Yuan L., Chen L., Dai T., Tu T., Zhang B., Yan H., Li W., Selenium species determination in se-enriched grain crops with foliar spray of sodium selenite by IP-RP-HPLC-UV-HG-AFS, Food Anal. Method, 14 (2021) 1345–1358.
  • [14] Azooz E.A., Wannas F.A., Jawad S. K., Developed cloud point extraction coupled with onium system for separation and determination cobalt in biological samples, Res. J. Pharm. Tech., 14(2) (2021) 594-598.
  • [15] Juretic H., Montalbo-Lomboy M., Van Leeuwen J.H., Cooper W.J., Grewell D., Hydroxyl radical formation in batch and continuous flow ultrasonic systems. Ultrason. Sonochem., 22 (2015) 600-606.
  • [16] Feist B., Mikula B., Preconcentration of some metal ions with lanthanum-8-hydroxyquinoline co-precipitation system, Food Chem., 147 (2014) 225-229
  • [17] Fouladvand M.T., Asadi J., Lotfollahi M.N., Simulation and optimization of aromatic extraction from lube oil cuts by liquid-liquid extraction, Chem .Eng. Res. Des., 165 (2021) 118-128.
  • [18] Mandlate J.S., Soares B.M., Seeger T.S., Vecchia P.D., Mello P.A., Flores E.M.M., Duarte F.A., Determination of cadmium and lead at sub-ppt level in soft drinks: An efficient combination between dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry, Food Chem., 221 (2017) 907–912.
  • [19] Song X., Wu J., Pang J., Wu Y., Huang X., Task specific monolith for magnetic field-reinforced in-tube solid phase microextraction of mercury species in waters prior to online HPLC quantification, J. Hazard Mater., 411 (2021) 125141.
  • [20] Ji Y., Zhao M., Li A., Zhao L., Hydrophobic deep eutectic solvent-based ultrasonic-assisted dispersive liquid-liquid microextraction for preconcentration and determination of trace cadmium and arsenic in wine samples, Microchem. J., 164 (2021) 105974.
  • [21] Becker R., Heyn L., Jung C., Indoor exposure to airborne PAHs: A comparison of stir bar sorptive extraction and pump sampling, Authorea Preprints 14 January 2021 - authorea.com.
  • [22] Melnyk A., Wolska L., Namieśnik J., Coacervativeextraction as a green technique for sample preparation for the analysis of organic compounds, J. Chromatogr. A., 1339 (2014) 1-12.
  • [23] Mogaddam M.R.A., Farajzadeh M. A., Mohebbi A., Nemati M., Hollow fiber–liquid phase microextraction method based on a new deep eutectic solvent for extraction and derivatization of some phenolic compounds in beverage samples packed in plastics, Talanta, 216 (2020) 120986.
  • [24] Armand M., Endres F., MacFarlane D.R., Ohno H., Scrosati B., Ionic-liquid materials for the electrochemical challenges of the future, Mater. Sustain. Energy, (2010) https://doi.org/10.1142/9789814317665_0020.
  • [25] Ferreira V.J., Almeida J.S., Lemos V.A., Oliveira O.M.C., Garcia K.S., Teixeira L.S.G., Determination of Cu, Ni, Mn, and Pb in diesel oil samples using reversed-phase vortex-assisted liquid-liquid microextraction associated with energy dispersive X-ray fluorescence spectrometry, Talanta, 222 (2021) 121514.
  • [26] Yıldırım M., Yılmaz I., Investigation of the usefullness of the Yıldız Irmak sediments as the cement aggregates, Cumhuriyet Earth Sci., 19 (2002) 181-192.
  • [27] Clesceri S., Greenberg E.A., Eaton D., Standard methods for examination of water and wastewater. 20. Eddition, American Public Health Association,(1999).
  • [28] Murphy J., Riley J.P., A single-solution method for the determination of soluble phosphate in sea water, J. Marine Biol. Assoc. UK., 37 (1958) 9-14.
  • [29] Mackeret F.J.H., Heron J., Talling C.F., Water analysis: some revised methods for limnologists. Sci. pub. Freshwater Biol. Assoc., (1978) 1-120.
  • [30] Dişli M., Akkurt F., Alıcılar A., Evaluatıon on water of Şanlıurfa balıklıgöl concernıng chemıcalparameters, J. Fac. Eng. Arch. Gazi Univ., 19 (3) (2004) 287-294.
  • [31] Mullin J.D., Riley J.P., The colorimetric determination of silica in water. part 3. method for determining the total silica content, Analyst. Lond., 88 (1955) 446-455.
  • [32] West D.M., Skoog D.A., Holler F.J., Crouch S.R., Analitik Kimya Temel İlkeler. Esma Kılıç, Hamza Yılmaz (ed) Bilim yayınları, Ankara (2009).
  • [33] Anonymous (2008) Water Pollution Control Regulation. 26786
  • [34] Juretic H., Montalbo-Lomboy M., Van Leeuwen J.H., Cooper W.J., Grewell D., Hydroxyl radical formation in batch and continuous flow ultrasonic systems, Ultrason Sonochem., 22 (2015) 600-606.
There are 34 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Gülşen Taşkın Çakıcı 0000-0001-7564-9777

Ergün Kasaka 0000-0003-0786-0196

Nail Altunay 0000-0001-9053-7570

Project Number RGD-018
Publication Date June 29, 2022
Submission Date January 13, 2022
Acceptance Date April 9, 2022
Published in Issue Year 2022Volume: 43 Issue: 2

Cite

APA Taşkın Çakıcı, G., Kasaka, E., & Altunay, N. (2022). The Quality of Yıldız River Water and Determining Trace Elements by Liquid-Liquid Micro-Extraction Analytical Method. Cumhuriyet Science Journal, 43(2), 201-210. https://doi.org/10.17776/csj.1056779