Research Article
BibTex RIS Cite

Computational Structure Characterization of 1,2,3-Selendiazole Isomers, Investigation of Some Molecular Properties and Biological Activities

Year 2022, Volume: 43 Issue: 2, 246 - 256, 29.06.2022
https://doi.org/10.17776/csj.1054772

Abstract

Four different selendiazole compounds were handled by computational chemistry methods. Compounds 1,2,3-selendiazole, 1,2,5-selendiazole, 1,2,4-selendiazole and 1,3,4-selendiazole were optimized at the B3LYP/6-31G(d) level. Structural parameters were examined. In the structural determination, IR and NMR techniques, which are spectroscopic methods, were applied. Quantum chemical parameters giving global properties such as the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy, hardness (η), softness (σ), chemical potential (µ), electronegativity (χ), electrophilicity index (ω), nucleophilicity index (ε), the electron accepting power (ω+), electron donating power (ω-) and polarizability were investigated for biological activities of selendiazoles. Local electrophilic and nucleophilic regions were determined using Fukui index functionals. Docking studies of the studied selendiazoles were performed with proteins representing the cervical cancer cell line and the MCF-7 breast cancer cell line.

References

  • [1] Joshi P. G., More M. S., Jadhav A. A., Khanna P. K., Materials and biological applications of 1, 2, 3-selenadiazoles: a review, Materials Today Chemistry, 16 (2020) 100255.
  • [2] Khanna P. K., Materials chemistry of 1, 2, 3-Selenadiazoles, Phosphorus, Sulfur, and Silicon and the Related Elements, 180(3-4) (2005) 951-955.
  • [3] Moawad E. B., Yousif M. Y., Metwally M. A., Synthesis of certain heteroaryl-fused pyrimidines and pyridines and selena-and thia-diazoles with naphthyl substituent as potential antifungal agents, Die Pharmazie, 44(12) (1989) 820-822.
  • [4] Al-qatrani N. H. K., Essa A. H., Al-Jadaan S. A., Synthesis, Characterization and Antibacterial Activity of Some New 1, 2, 3-Selenadiazole derived from 4-amino acetophenone, Journal of Physics: Conference Series, 1279(1) (2019) 012036.
  • [5] Atta S. M. S., Farrag D. S., Sweed A. M., Abdel-Rahman A. H., Preparation of new polycyclic compounds derived from benzofurans and furochromones. An approach to novel 1, 2, 3-thia-, and selena-diazolofurochromones of anticipated antitumor activities, European Journal of Medicinal Chemistry, 45(11) (2010) 4920-4927.
  • [6] Arsenyan P., Rubin K., Shestakova I., Domracheva I., 4-Methyl-1, 2, 3-selenadiazole-5-carboxylic acid amides: antitumor action and cytotoxic effect correlation. European Journal of Medicijnal Chemistry, 42(5) (2007) 635-640.
  • [7] Al-Balas Q. A., Al-Smadi M. L., Hassan M. A., Al Jabal G. A., Almaaytah A. M., Alzoubi K. H., Multi-Armed 1, 2, 3-Selenadiazole and 1, 2, 3-Thiadiazole Benzene Derivatives as Novel Glyoxalase-I Inhibitors, Molecules, 24(18) (2019) 3210.
  • [8] Abramov M. A., Dehaen W., D'hooge B., Petrov M. L., Smeets S., Toppet S., Voets M., Nucleophilic intramolecular cyclization reactions of alkynechalcogenolates, Tetrahedron, 56(24) (2000) 3933-3940.
  • [9] Rocha J. B., Piccoli B. C., Oliveira, C. S. (2017). Biological and chemical interest in selenium: a brief historical account, ARKIVOC: Online Journal of Organic Chemistry, 2017.
  • [10] Mhizha S., Młochowski J., Synthesis of 2-acyl-and 2-sulfonylbenzisoselenazol-3 (2H)-ones, Synthetic Communications, 27(2) (1997) 283-291.
  • [11] Fischer H., Kalbas C., Hofmann J., Dichalcogenolanes by ring-expansion of transition metal-coordinated thietanes and selenetanes, Journal of the Chemical Society, Chemical Communications, (15) (1992) 1050-1051.
  • [12] Asmus S. M., Bergstraesser U., Regitz M., Organophosphorus compounds; 142: A simple approach to 1, 2, 4-selena-and telluradiphospholes from phosphaalkynes and the chalcogen elements and a first study of their reactivity, Synthesis, 1999(09) (1999) 1642-1650.
  • [13] Ito M., Tokito N., Okazaki R., 1, 3, 2, 4-Diselenastannaboretane, a novel selenium-containing four-membered boracycle: synthesis, structure and thermal cycloreversion into a selenoxoborane, Chemical Communications, (22) (1998) 2495-2496.
  • [14] Kodani M., Takimiya K., Aso Y., Otsubo T., Nakayashiki T., Misaki Y., Effective Synthesis of 1, 3-Diselenole-2-selone-4, 5-diselenolate (dsis) and its Utilization for the Synthesis of Selenocycle-fused Tetraselenafulvalene (TSF) Derivatives, Synthesis, 2001(11) (2001) 1614-1618.
  • [15] Osajda M., Bisbenzisoselenazol-3 (2H)-ones, a new group of ebselen analogues, Polish Journal of Chemistry, 75(6) (2001) 823-830.
  • [16] Bertini V., Synthesis of 1, 2, 5‐Selenadiazole and some of its Derivatives, Angewandte Chemie International Edition in English, 6(6) (1967) 563-564.
  • [17] El-Sadek M. M., El-Dayem, N. S. A., Hassan S. Y., Yacout G. A., 1, 3, 4-oxadiazole and selenadiazole derivatives as new C-glycosyl analogs with MAO-B, antibacterial and antifungal activities, Int. Res. J. Microbiol., 4 (2013) 204-219.
  • [18] Velusamy M., Thomas K. J., Lin J. T., Wen Y. S., Benzo [1, 2, 5] selenadiazole bridged amines: electro-optical properties, Tetrahedron Letters, 46(44) (2005) 7647-7651.
  • [19] Ostrowski J. C., Susumu K., Robinson M. R., Therien M. J., Bazan G. C., Near‐Infrared Electroluminescent Light‐Emitting Devices Based on Ethyne‐Bridged Porphyrin Fluorophores, Advanced Materials, 15(15) (2003) 1296- 1300.
  • [20] Dennington R.D., Keith T.A., Millam J.M., GaussView 6.0. 16, Semichem. Inc., Shawnee Mission KS, 2016.
  • [21] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Nakatsuji H., Gaussian09 Revision D. 01, Gaussian Inc.,Wallingford CT, 2009. http://www.gaussian.com.
  • [22] Becke A. D., Perspective: Fifty years of density-functional theory in chemical physics, The Journal of Chemical Physics, 140(18) (2014) 18A301.
  • [23] Lee C., Yang W., Parr R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B., 37(2) (1988) 785.
  • [24] Zhao Y., Truhlar D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical Chemistry Accounts, 120(1-3) (2008) 215-241.
  • [25] Rassolov V.A., Ratner M.A., Pople J.A., Redfern P.C., Curtiss L.A., 6-31G* basis set for third-row atoms, J. Comput. Chem., 22 (9) (2001) 976–984.
  • [26] EL Aatiaoui, A., Koudad, M., Chelfi, T., ERKAN, S., Azzouzi, M., Aouniti, A., & Oussaid, A., Experimental and theoretical study of new Schiff bases based on imidazo (1, 2-a) pyridine as corrosion inhibitor of mild steel in 1M HCl, Journal of Molecular Structure, (2021) 1226 129372.
  • [27] Al-Otaibi J. S., Mary Y. S., Mary Y. S., Kaya S., Erkan S., Spectral analysis and DFT investigation of some benzopyran analogues and their self-assemblies with graphene, Journal of Molecular Liquids, 317 (2020) 113924.
  • [28] Bikadi Z., Hazai E., Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock, Journal of Cheminformatics, 1(1) (2009) 1-16.
  • [29] Güzel E., Koçyiğit Ü. M., Taslimi P., Erkan S., Taskin, O. S., Biologically active phthalocyanine metal complexes: Preparation, evaluation of α‐glycosidase and anticholinesterase enzyme inhibition activities, and molecular docking studies, Journal of Biochemical and Molecular Toxicology, (2021) e22765.
  • [30] Köse M., Kurtoglu N., Gümüşsu Ö., Tutak M., McKee V., Karakaş D., Kurtoglu M., Synthesis, characterization and antimicrobial studies of 2-{(E)-[(2-hydroxy-5-methylphenyl) imino] methyl}-4-[(E)-phenyldiazenyl] phenol as a novel azo-azomethine dye, Journal of Molecular Structure, 1053 (2013) 89-99.
  • [31] Kaya S., Kaya C., A new method for calculation of molecular hardness: a theoretical study, Computational and Theoretical Chemistry, 1060 (2015) 66-70.
  • [32] Wu S., Vossius S., Rahmouni S., Miletic A. V., Vang T., Vazquez-Rodriguez J., ... Tautz L. Multidentate small-molecule inhibitors of vaccinia H1-related (VHR) phosphatase decrease proliferation of cervix cancer cells, Journal of Medicinal Chemistry, 52(21) (2009) 6716-6723.
  • [33] Wu D., Li Y., Song G., Cheng C., Zhang R., Joachimiak A., ... Liu Z. J., Structural basis for the inhibition of human 5, 10-methenyltetrahydrofolate synthetase by N10-substituted folate analogues, Cancer Research, 69(18) (2009) 7294-7301.
Year 2022, Volume: 43 Issue: 2, 246 - 256, 29.06.2022
https://doi.org/10.17776/csj.1054772

Abstract

References

  • [1] Joshi P. G., More M. S., Jadhav A. A., Khanna P. K., Materials and biological applications of 1, 2, 3-selenadiazoles: a review, Materials Today Chemistry, 16 (2020) 100255.
  • [2] Khanna P. K., Materials chemistry of 1, 2, 3-Selenadiazoles, Phosphorus, Sulfur, and Silicon and the Related Elements, 180(3-4) (2005) 951-955.
  • [3] Moawad E. B., Yousif M. Y., Metwally M. A., Synthesis of certain heteroaryl-fused pyrimidines and pyridines and selena-and thia-diazoles with naphthyl substituent as potential antifungal agents, Die Pharmazie, 44(12) (1989) 820-822.
  • [4] Al-qatrani N. H. K., Essa A. H., Al-Jadaan S. A., Synthesis, Characterization and Antibacterial Activity of Some New 1, 2, 3-Selenadiazole derived from 4-amino acetophenone, Journal of Physics: Conference Series, 1279(1) (2019) 012036.
  • [5] Atta S. M. S., Farrag D. S., Sweed A. M., Abdel-Rahman A. H., Preparation of new polycyclic compounds derived from benzofurans and furochromones. An approach to novel 1, 2, 3-thia-, and selena-diazolofurochromones of anticipated antitumor activities, European Journal of Medicinal Chemistry, 45(11) (2010) 4920-4927.
  • [6] Arsenyan P., Rubin K., Shestakova I., Domracheva I., 4-Methyl-1, 2, 3-selenadiazole-5-carboxylic acid amides: antitumor action and cytotoxic effect correlation. European Journal of Medicijnal Chemistry, 42(5) (2007) 635-640.
  • [7] Al-Balas Q. A., Al-Smadi M. L., Hassan M. A., Al Jabal G. A., Almaaytah A. M., Alzoubi K. H., Multi-Armed 1, 2, 3-Selenadiazole and 1, 2, 3-Thiadiazole Benzene Derivatives as Novel Glyoxalase-I Inhibitors, Molecules, 24(18) (2019) 3210.
  • [8] Abramov M. A., Dehaen W., D'hooge B., Petrov M. L., Smeets S., Toppet S., Voets M., Nucleophilic intramolecular cyclization reactions of alkynechalcogenolates, Tetrahedron, 56(24) (2000) 3933-3940.
  • [9] Rocha J. B., Piccoli B. C., Oliveira, C. S. (2017). Biological and chemical interest in selenium: a brief historical account, ARKIVOC: Online Journal of Organic Chemistry, 2017.
  • [10] Mhizha S., Młochowski J., Synthesis of 2-acyl-and 2-sulfonylbenzisoselenazol-3 (2H)-ones, Synthetic Communications, 27(2) (1997) 283-291.
  • [11] Fischer H., Kalbas C., Hofmann J., Dichalcogenolanes by ring-expansion of transition metal-coordinated thietanes and selenetanes, Journal of the Chemical Society, Chemical Communications, (15) (1992) 1050-1051.
  • [12] Asmus S. M., Bergstraesser U., Regitz M., Organophosphorus compounds; 142: A simple approach to 1, 2, 4-selena-and telluradiphospholes from phosphaalkynes and the chalcogen elements and a first study of their reactivity, Synthesis, 1999(09) (1999) 1642-1650.
  • [13] Ito M., Tokito N., Okazaki R., 1, 3, 2, 4-Diselenastannaboretane, a novel selenium-containing four-membered boracycle: synthesis, structure and thermal cycloreversion into a selenoxoborane, Chemical Communications, (22) (1998) 2495-2496.
  • [14] Kodani M., Takimiya K., Aso Y., Otsubo T., Nakayashiki T., Misaki Y., Effective Synthesis of 1, 3-Diselenole-2-selone-4, 5-diselenolate (dsis) and its Utilization for the Synthesis of Selenocycle-fused Tetraselenafulvalene (TSF) Derivatives, Synthesis, 2001(11) (2001) 1614-1618.
  • [15] Osajda M., Bisbenzisoselenazol-3 (2H)-ones, a new group of ebselen analogues, Polish Journal of Chemistry, 75(6) (2001) 823-830.
  • [16] Bertini V., Synthesis of 1, 2, 5‐Selenadiazole and some of its Derivatives, Angewandte Chemie International Edition in English, 6(6) (1967) 563-564.
  • [17] El-Sadek M. M., El-Dayem, N. S. A., Hassan S. Y., Yacout G. A., 1, 3, 4-oxadiazole and selenadiazole derivatives as new C-glycosyl analogs with MAO-B, antibacterial and antifungal activities, Int. Res. J. Microbiol., 4 (2013) 204-219.
  • [18] Velusamy M., Thomas K. J., Lin J. T., Wen Y. S., Benzo [1, 2, 5] selenadiazole bridged amines: electro-optical properties, Tetrahedron Letters, 46(44) (2005) 7647-7651.
  • [19] Ostrowski J. C., Susumu K., Robinson M. R., Therien M. J., Bazan G. C., Near‐Infrared Electroluminescent Light‐Emitting Devices Based on Ethyne‐Bridged Porphyrin Fluorophores, Advanced Materials, 15(15) (2003) 1296- 1300.
  • [20] Dennington R.D., Keith T.A., Millam J.M., GaussView 6.0. 16, Semichem. Inc., Shawnee Mission KS, 2016.
  • [21] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Nakatsuji H., Gaussian09 Revision D. 01, Gaussian Inc.,Wallingford CT, 2009. http://www.gaussian.com.
  • [22] Becke A. D., Perspective: Fifty years of density-functional theory in chemical physics, The Journal of Chemical Physics, 140(18) (2014) 18A301.
  • [23] Lee C., Yang W., Parr R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B., 37(2) (1988) 785.
  • [24] Zhao Y., Truhlar D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical Chemistry Accounts, 120(1-3) (2008) 215-241.
  • [25] Rassolov V.A., Ratner M.A., Pople J.A., Redfern P.C., Curtiss L.A., 6-31G* basis set for third-row atoms, J. Comput. Chem., 22 (9) (2001) 976–984.
  • [26] EL Aatiaoui, A., Koudad, M., Chelfi, T., ERKAN, S., Azzouzi, M., Aouniti, A., & Oussaid, A., Experimental and theoretical study of new Schiff bases based on imidazo (1, 2-a) pyridine as corrosion inhibitor of mild steel in 1M HCl, Journal of Molecular Structure, (2021) 1226 129372.
  • [27] Al-Otaibi J. S., Mary Y. S., Mary Y. S., Kaya S., Erkan S., Spectral analysis and DFT investigation of some benzopyran analogues and their self-assemblies with graphene, Journal of Molecular Liquids, 317 (2020) 113924.
  • [28] Bikadi Z., Hazai E., Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock, Journal of Cheminformatics, 1(1) (2009) 1-16.
  • [29] Güzel E., Koçyiğit Ü. M., Taslimi P., Erkan S., Taskin, O. S., Biologically active phthalocyanine metal complexes: Preparation, evaluation of α‐glycosidase and anticholinesterase enzyme inhibition activities, and molecular docking studies, Journal of Biochemical and Molecular Toxicology, (2021) e22765.
  • [30] Köse M., Kurtoglu N., Gümüşsu Ö., Tutak M., McKee V., Karakaş D., Kurtoglu M., Synthesis, characterization and antimicrobial studies of 2-{(E)-[(2-hydroxy-5-methylphenyl) imino] methyl}-4-[(E)-phenyldiazenyl] phenol as a novel azo-azomethine dye, Journal of Molecular Structure, 1053 (2013) 89-99.
  • [31] Kaya S., Kaya C., A new method for calculation of molecular hardness: a theoretical study, Computational and Theoretical Chemistry, 1060 (2015) 66-70.
  • [32] Wu S., Vossius S., Rahmouni S., Miletic A. V., Vang T., Vazquez-Rodriguez J., ... Tautz L. Multidentate small-molecule inhibitors of vaccinia H1-related (VHR) phosphatase decrease proliferation of cervix cancer cells, Journal of Medicinal Chemistry, 52(21) (2009) 6716-6723.
  • [33] Wu D., Li Y., Song G., Cheng C., Zhang R., Joachimiak A., ... Liu Z. J., Structural basis for the inhibition of human 5, 10-methenyltetrahydrofolate synthetase by N10-substituted folate analogues, Cancer Research, 69(18) (2009) 7294-7301.
There are 33 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Sultan Erkan 0000-0001-6744-929X

Doğan Can Dikyol

Publication Date June 29, 2022
Submission Date January 7, 2022
Acceptance Date June 9, 2022
Published in Issue Year 2022Volume: 43 Issue: 2

Cite

APA Erkan, S., & Dikyol, D. C. (2022). Computational Structure Characterization of 1,2,3-Selendiazole Isomers, Investigation of Some Molecular Properties and Biological Activities. Cumhuriyet Science Journal, 43(2), 246-256. https://doi.org/10.17776/csj.1054772