Research Article
BibTex RIS Cite

Syntheses of Hexaminomonoferrocenylspiro(N/O)cyclotetraphosphazenes: Spectral Properties and Antituberculosis Activities

Year 2022, Volume: 43 Issue: 2, 193 - 200, 29.06.2022

Abstract

In this study, 3-(N-ferrocenylmethylamino)-1-propanol, FcCH2N(CH2)3OH, is prepared by the reduction of Schiff base with NaBH4, which is obtained from the condensation reaction of ferrocenecarboxaldehyde and 3-amino-1-propanol in methanol. Reaction of octachlorocyclotetraphosphazene (OCCP, tetramer, N4P4Cl8, 1) and bidentate ligand (L), sodium 3-(N-ferrocenylmethylamino)-1-propanoxide, give hexachloromonoferrocenylspiro (2). Fully substituted mono-ferrocenylhexaamino(N/O) spirocyclotetraphosphazenes (2a and 2b) have been synthesized by the reaction of 2 with excesses of propylamine and butylamine, respectively. The structures of 2a and 2b were determined using elemental analysis, mass spectrometry (ESI-MS), FTIR, 1H, 13C and 31P NMR data. In addition, antituberculosis activity studies of 2a and 2b against Mycobacterium Tuberculosis H37Rv reference strain were performed.

Thanks

The author thanks to Professor Zeynel Kılıç and Hülya Şimşek for their helpful discussions in spectroscopy and antituberculosis activity study.

References

  • [1] Chandrasekhar V., Chakraborty A., Phosphazenes, Organophosphorus Chem., 49 (2020) 349-376.
  • [2] Stewart F. F., Phosphazenes, Organophosphorus Chem., 44 (2015) 397-430.
  • [3] Gleria M., Jaeger R. D., Phosphazenes:A Worldwide Insight. New York: Nova Science Publishers, (2004), 1047.
  • [4] Medjdoub L., Mohammed B., New method for nucleophilic substitution on hexachlorocyclotriphosphazene by allylamine using an algerian proton exchanged montmorillonite clay (Maghnite-H+) as a green solid catalyst, Bull. Chem. React. Eng.&Catal., 11(2) (2016) 151-160.
  • [5] Elmas G., Syntheses and structural characterizations of 2-pyridyl(N/O)spirocyclotriphosphazene derivatives, Phosphorus, Sulfur Silicon Relat. Elem., 194 (1-2) (2019) 13-24.
  • [6] Elmas G., Okumuş A., Kılıç Z., Çam M., Açık L., Hökelek T., Phosphorus-nitrogen compounds. Part 40. The syntheses of (4-fluorobenzyl) pendant armed cyclotetraphosphazene derivatives: spectroscopic, crystallographic and stereogenic properties, DNA interactions and antimicrobial activities, Inorg. Chim. Acta, 476 (2018) 110-122.
  • [7] Mutlu G., Elmas G., Kılıç Z., Hökelek T., Koç L. Y., Türk M., Açık L., Aydın B., Dal H., Phosphorus-nitrogen Compounds: Part 31. Syntheses, structural and stereogenic properties, in vitro cytotoxic and antimicrobial activities, DNA interactions of novel bicyclotetraphosphazenes containing bulky side group, Inorg. Chim. Acta, 436 (2015) 69-81.
  • [8] Elmas G., Okumuş A., Sevinç P., Kılıç Z., Açık L., Atalan M., Türk M., Deniz G., Hökelek T., Phosphorus–nitrogen compounds. Part 37. Syntheses and structural characterizations, biological activities of mono and bis (4-fluorobenzyl) spirocyclotetraphosphazenes, New J. Chem., 41 (13) (2017) 5818-5835.
  • [9] Chandrasekhar V., Thilagar P., Pandian B. M., Cyclophosphazene-based multi-site coordination ligands, Coord. Chem. Rev., 251 (2007) 1045-1074.
  • [10] Okumuş A., Elmas G., Kılıç Z., Ramazanoğlu N., Açık L., Türk M., Akça G., The reactions of N3P3Cl6 with monodentate and bidentate ligands: The syntheses and structural characterizations, In vitro antimicrobial activities and DNA interactions of 4-fluorobenzyl (N/O) spirocylotriphosphazenes, Turk. J. Chem., 41 (2017) 525-547.
  • [11] Beşli S., Coles S. J., Davies D. B., Kılıç A., Shaw R. A., Bridged cyclophosphazenes resulting from deprotonation reactions bearing a P-NH group, Dalton Trans., 40 (19) (2011) 5307-5315.
  • [12] Tümer Y., Asmafiliz N., Kılıç Z., Hökelek T., Açık L., Solak A. O., Yola M. L., Phosphorus–nitrogen compounds: part 30. Syntheses and structural investigations, antimicrobial and cytotoxic activities and DNA interactions of vanillinato-substituted NN or NO spirocyclic monoferrocenyl cyclotriphosphazenes, J. Biol. Inorg. Chem., 20(8) ( 2015) 165-178.
  • [13] Xu L. C., Chen C., Zhu J., Tang M., Chen A., Allcock H. R., Siedlecki C. A., New cross-linkable poly[bis(octafluoropentoxy) phosphazene] biomaterials: Synthesis, surface characterization, bacterial adhesion, and plasma coagulation responses, J. Biomed. Mater. Res., 108 (8) (2020) 3250-3260.
  • [14] Elmas G., Okumuş A., Kılıç Z., Çelik S. P., Açık L., The Spectroscopic and Thermal Properties, Antibacterial and Antifungal Activity and DNA Interactions of 4- (Fluorobenzyl)Spiro(N/O) Cyclotriphosphazenium Salts, J. Turk. Chem. Soc. Sect. A: Chem., 4 (3) (2017) 993-1016.
  • [15] Jimenez J., Pintre I., Gascon E., Sanchez-Somolinos C., Alcala R., Cavero E., Serrano J. L., Oriol L., Photoresponsive Liquid‐Crystalline Dendrimers Based on a Cyclotriphosphazene Core, Macromol. Chem. Phys., 215 (2014) 1551-1562.
  • [16] Selberg S., Pagano T., Tshepelevitsh S., Haljasorg T., Vahur S., Luik J., Saame J., Leito I., Synthesis and photophysics of a series of lipophilic phosphazene‐based fluorescent indicators, J. Phys. Org. Chem., 32 (7) (2019) e3950.
  • [17] Wang X., Tan A. Y. X., Cho C. M., Ye Q., He C., Ji R., Xie H. Q., Tsai J. W. H., Xu J., Perfluoropolyether Boundary Lubricants Based on the Star Architecture, Tribology Int., 9 (2015) 257–262.
  • [18] Mucur S. P., Canımkurbey B., Kavak P., Akbaş H., Karadağ A., Charge carrier performance of phosphazene-based ionic liquids doped hole transport layer in organic light-emitting diodes, Appl. Phys. A, 126 (12) (2020) 1-14.
  • [19] Singh S. K., Kumar V., Drew M. G. B., Singh N., Syntheses, crystal structures and photoluminescent properties of new heteroleptic Ni(II) and Pd(II) complexes of ferrocene functionalized dithiocarbamate-and dipyrromethene ligands, Inorg. Chem. Commun., 37 (2013) 151-154.
  • [20] Haibin G., Shengdong M., Guirong Q., Xiong L., Li Z., Yanfei Y., Didier A., Redox-stimuli-responsive drug delivery systems with supramolecular ferrocenyl-containing polymers for controlled release, Coord. Chem. Rev., 364 (2018) 51-85.
  • [21] Lennox A. J. J., Nutting J. E., Stahl S. S., Selective electrochemical generation of benzylic radicals enabled by ferrocene-based electron-transfer mediators, Chem. Sci., 9 (2018) 356-361.
  • [22] Singh R. K., Kukrety A., Saxena R. C., Chouhan A., Jain S. L., Ray S. S., Phosphazene-based novel organo-inorganic hybrid salt: synthesis, characterization and performance evaluation as multifunctional additive in polyol, RSC Adv., 7 (2017)13390-13397.
  • [23] Elmas G., Okumuş A., Cemaloğlu R., Kılıç Z., Çelik S. P., Açık L., Tunalı B. Ç., Türk M., Çerçi N. A., Güzel R., Hökelek T., Phosphorus-Nitrogen Compounds. Part 38. Syntheses, characterizations, cytotoxic, antituberculosis and antimicrobial activities and DNA interactions of spirocyclotetraphosphazenes with bis-ferrocenyl pendant arms, J. Organomet. Chem., 853 (2017) 93-106.
  • [24] Elmas G., Kılıç Z., Çoşut B., Keşan G., Açık L., Çam M., Tunalı B. Ç., Türk M., Hökelek T., Synthesis of Bis(2,2,3,3-tetrafluoro-1,4-butanedialkoxy)-2-trans-6-bis(4-fluorobenzyl)spiro cyclotetraphosphazene: Structural Characterization, Biological Activity and DFT Studies, J. Chem. Crystallogr., 51 (2020) 235-250.
  • [25] Asmafiliz N., Kılıç Z., Öztürk A., Hökelek T., Koç L. Y., Açık L., Kısa Ö., Albay A., Üstündağ Z., Solak A. O., Phosphorus−Nitrogen Compounds. 18. Syntheses, stereogenic properties, structural and electrochemical investigations, biological activities, and DNA interactions of new spirocyclic Mono- and bisferrocenylphosphazene derivatives, Inorg. Chem., 48 (21) (2009) 10102-10116.
  • [26] Okumuş A., Elmas G., Cemaloğlu R., Aydın B., Binici A., Şimşek H., Açık L., Türk M., Güzel R., Kılıç Z., Hökelek T., Phosphorus-Nitrogen Compounds. Part 35. Syntheses, spectroscopic and electrochemical properties, antituberculosis, antimicrobial and cytotoxic activities of mono-ferrocenyl-spirocyclotetraphosphazenes, New J. Chem., 40 (2016) 5588-5603.
  • [27] Elmas G., Okumuş A., Kılıç Z., Özbeden P., Açık L., Tunalı B. Ç., Türk M., Çerçi N. A., Hökelek T., Phosphorus-nitrogen compounds. Part 48. Syntheses of the phosphazenium salts containing 2-pyridyl pendant arm: Structural characterizations, thermal analysis, antimicrobial and cytotoxic activity studies, Indian J. Chem. Sec. A, 59A (2020) 533-550.
  • [28] Elmas G., Okumuş A., Koç L. Y., Soltanzade H., Kılıç Z., Hökelek T., Dal H., Açık L., Üstündağ Z., Dündar D., Yavuz M., Phosphorus-Nitrogen Compounds. Part 29. Syntheses, crystal structures, spectroscopic and stereogenic properties, electrochemical investigations, antituberculosis, antimicrobial and cytotoxic activities and DNA interactions of ansa-spiro-ansa cyclotetraphosphazenes, Eur. J. Med. Chem., 87 (2014) 662-676.
  • [29] Okumus A., Elmas G., Kılıç Z., Binici A., Ramazanoğlu N., Açık L., Çoşut B., Hökelek T., Güzel R., Tunalı B. Ç., Türk M., Şimşek H., The comparative reactions of 2‐ cis ‐4‐ansa and spiro cyclotetraphosphazenes with difunctional ligands: Structural and stereogenic properties, electrochemical, antimicrobial and cytotoxic activity studies, App. Organomet Chem., e6150 (2021) 1-28.
  • [30] Binici A., Okumus A., Elmas G., Kılıç Z., Ramazanoğlu N., Açık L., Şimşek H., Tunalı B. Ç., Türk M., Güzel R., Hökelek T., Phosphorus-nitrogen compounds. Part 42. The comparative syntheses of 2-cis-4-ansa(N/O) and spiro(N/O) cyclotetraphosphazene derivatives: spectroscopic and crystallographic characterization, antituberculosis and cytotoxic activity studies, New J. Chem., 43 (2019) 6856-6873.
  • [31] Binici A., Okumus A., Yakut M., Elmas G., Kılıç Z., Koyunoğlu D., Açık L., Şimşek H., Phosphorus-nitrogen compounds. Part 56. Comparative syntheses and spectral properties of multiheterocyclic 2-cis-4-ansa and spiro-ferrocenyl (N/O)cyclotetraphosphazenes: Antituberculosis and antimicrobial activity and DNA interaction studies, Phosphorus, Sulfur Silicon Relat. Elem., (2021)
  • [32] Elmas G., Okumuş A., Hökelek T., Kılıç Z., Phosphorus-Nitrogen Compounds. Part 52. The reactions of octachlorocyclotetraphosphazene with sodium 3-(N-ferrocenylmethylamino)-1-propanoxide: investigations of spectroscopic, crystallographic and stereogenic properties, Inorg. Chim. Acta, 497 (11) (2019) 119106.
  • [33] Elmas G., The reactions of 2-trans-6-bis(4-fluorobenzyl)spirocyclotetraphosphazene with primary amines: spectroscopic and crystallographic characterizations, Phosphorus Sulfur Silicon Relat. Elem., 192 (11) (2017) 1224-1232.
  • [34] Carriedo G. A., Alonso F. G., Gonzalez P. A., Menendez J. R., Infrared and Raman spectra of the phosphazene high polymer [NP(O2C12H8)]n, J. Raman Spectrosc., 29 (1998) 327-330.
  • [35] Elmas G., Syntheses and spectroscopic investigations of 2-pyridyl(N/N)spirocyclotriphosphazenes, J. Turk. Chem. Soc. Sect. A: Chem., 5(2) (2018) 621-634.
  • [36] Mutlu Ö. F., Binici A., Okumuş A., Elmas G., Cosut B., Kılıç Z., Hökelek T., Phosphorus-nitrogen Compounds. Part 54. Syntheses of Chiral Amino-4-fluorobenzyl-spiro(N/O)cyclotriphosphazenes: Structural and Stereogenic Properties, New J. Chem., 45 (2021) 12178-12192.
  • [37] Binici A., Elmas G., Okumus A., Tayhan, S. E., Hökelek, T., Şeker, B. N., Açık, L., Kılıç Z., Phosphorus-nitrogen compounds. Part 58. Syntheses, structural characterizations and biological activities of 4-fluorobenzyl-spiro(N/O)cyclotriphosphazene derivatives, J. Biomol. Struc.& Dyn., (2021).
  • [38] World Health organization, Tuberculosis. Key facts. Available at: https://www.who.int/news-room/fact-sheets/detail/tuberculosis. Retrieved October 14, 2021.
  • [39] Clinical and Laboratory Standards Institute, M24-A2, Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Approved Standard-Second Edition, (2011).
Year 2022, Volume: 43 Issue: 2, 193 - 200, 29.06.2022

Abstract

References

  • [1] Chandrasekhar V., Chakraborty A., Phosphazenes, Organophosphorus Chem., 49 (2020) 349-376.
  • [2] Stewart F. F., Phosphazenes, Organophosphorus Chem., 44 (2015) 397-430.
  • [3] Gleria M., Jaeger R. D., Phosphazenes:A Worldwide Insight. New York: Nova Science Publishers, (2004), 1047.
  • [4] Medjdoub L., Mohammed B., New method for nucleophilic substitution on hexachlorocyclotriphosphazene by allylamine using an algerian proton exchanged montmorillonite clay (Maghnite-H+) as a green solid catalyst, Bull. Chem. React. Eng.&Catal., 11(2) (2016) 151-160.
  • [5] Elmas G., Syntheses and structural characterizations of 2-pyridyl(N/O)spirocyclotriphosphazene derivatives, Phosphorus, Sulfur Silicon Relat. Elem., 194 (1-2) (2019) 13-24.
  • [6] Elmas G., Okumuş A., Kılıç Z., Çam M., Açık L., Hökelek T., Phosphorus-nitrogen compounds. Part 40. The syntheses of (4-fluorobenzyl) pendant armed cyclotetraphosphazene derivatives: spectroscopic, crystallographic and stereogenic properties, DNA interactions and antimicrobial activities, Inorg. Chim. Acta, 476 (2018) 110-122.
  • [7] Mutlu G., Elmas G., Kılıç Z., Hökelek T., Koç L. Y., Türk M., Açık L., Aydın B., Dal H., Phosphorus-nitrogen Compounds: Part 31. Syntheses, structural and stereogenic properties, in vitro cytotoxic and antimicrobial activities, DNA interactions of novel bicyclotetraphosphazenes containing bulky side group, Inorg. Chim. Acta, 436 (2015) 69-81.
  • [8] Elmas G., Okumuş A., Sevinç P., Kılıç Z., Açık L., Atalan M., Türk M., Deniz G., Hökelek T., Phosphorus–nitrogen compounds. Part 37. Syntheses and structural characterizations, biological activities of mono and bis (4-fluorobenzyl) spirocyclotetraphosphazenes, New J. Chem., 41 (13) (2017) 5818-5835.
  • [9] Chandrasekhar V., Thilagar P., Pandian B. M., Cyclophosphazene-based multi-site coordination ligands, Coord. Chem. Rev., 251 (2007) 1045-1074.
  • [10] Okumuş A., Elmas G., Kılıç Z., Ramazanoğlu N., Açık L., Türk M., Akça G., The reactions of N3P3Cl6 with monodentate and bidentate ligands: The syntheses and structural characterizations, In vitro antimicrobial activities and DNA interactions of 4-fluorobenzyl (N/O) spirocylotriphosphazenes, Turk. J. Chem., 41 (2017) 525-547.
  • [11] Beşli S., Coles S. J., Davies D. B., Kılıç A., Shaw R. A., Bridged cyclophosphazenes resulting from deprotonation reactions bearing a P-NH group, Dalton Trans., 40 (19) (2011) 5307-5315.
  • [12] Tümer Y., Asmafiliz N., Kılıç Z., Hökelek T., Açık L., Solak A. O., Yola M. L., Phosphorus–nitrogen compounds: part 30. Syntheses and structural investigations, antimicrobial and cytotoxic activities and DNA interactions of vanillinato-substituted NN or NO spirocyclic monoferrocenyl cyclotriphosphazenes, J. Biol. Inorg. Chem., 20(8) ( 2015) 165-178.
  • [13] Xu L. C., Chen C., Zhu J., Tang M., Chen A., Allcock H. R., Siedlecki C. A., New cross-linkable poly[bis(octafluoropentoxy) phosphazene] biomaterials: Synthesis, surface characterization, bacterial adhesion, and plasma coagulation responses, J. Biomed. Mater. Res., 108 (8) (2020) 3250-3260.
  • [14] Elmas G., Okumuş A., Kılıç Z., Çelik S. P., Açık L., The Spectroscopic and Thermal Properties, Antibacterial and Antifungal Activity and DNA Interactions of 4- (Fluorobenzyl)Spiro(N/O) Cyclotriphosphazenium Salts, J. Turk. Chem. Soc. Sect. A: Chem., 4 (3) (2017) 993-1016.
  • [15] Jimenez J., Pintre I., Gascon E., Sanchez-Somolinos C., Alcala R., Cavero E., Serrano J. L., Oriol L., Photoresponsive Liquid‐Crystalline Dendrimers Based on a Cyclotriphosphazene Core, Macromol. Chem. Phys., 215 (2014) 1551-1562.
  • [16] Selberg S., Pagano T., Tshepelevitsh S., Haljasorg T., Vahur S., Luik J., Saame J., Leito I., Synthesis and photophysics of a series of lipophilic phosphazene‐based fluorescent indicators, J. Phys. Org. Chem., 32 (7) (2019) e3950.
  • [17] Wang X., Tan A. Y. X., Cho C. M., Ye Q., He C., Ji R., Xie H. Q., Tsai J. W. H., Xu J., Perfluoropolyether Boundary Lubricants Based on the Star Architecture, Tribology Int., 9 (2015) 257–262.
  • [18] Mucur S. P., Canımkurbey B., Kavak P., Akbaş H., Karadağ A., Charge carrier performance of phosphazene-based ionic liquids doped hole transport layer in organic light-emitting diodes, Appl. Phys. A, 126 (12) (2020) 1-14.
  • [19] Singh S. K., Kumar V., Drew M. G. B., Singh N., Syntheses, crystal structures and photoluminescent properties of new heteroleptic Ni(II) and Pd(II) complexes of ferrocene functionalized dithiocarbamate-and dipyrromethene ligands, Inorg. Chem. Commun., 37 (2013) 151-154.
  • [20] Haibin G., Shengdong M., Guirong Q., Xiong L., Li Z., Yanfei Y., Didier A., Redox-stimuli-responsive drug delivery systems with supramolecular ferrocenyl-containing polymers for controlled release, Coord. Chem. Rev., 364 (2018) 51-85.
  • [21] Lennox A. J. J., Nutting J. E., Stahl S. S., Selective electrochemical generation of benzylic radicals enabled by ferrocene-based electron-transfer mediators, Chem. Sci., 9 (2018) 356-361.
  • [22] Singh R. K., Kukrety A., Saxena R. C., Chouhan A., Jain S. L., Ray S. S., Phosphazene-based novel organo-inorganic hybrid salt: synthesis, characterization and performance evaluation as multifunctional additive in polyol, RSC Adv., 7 (2017)13390-13397.
  • [23] Elmas G., Okumuş A., Cemaloğlu R., Kılıç Z., Çelik S. P., Açık L., Tunalı B. Ç., Türk M., Çerçi N. A., Güzel R., Hökelek T., Phosphorus-Nitrogen Compounds. Part 38. Syntheses, characterizations, cytotoxic, antituberculosis and antimicrobial activities and DNA interactions of spirocyclotetraphosphazenes with bis-ferrocenyl pendant arms, J. Organomet. Chem., 853 (2017) 93-106.
  • [24] Elmas G., Kılıç Z., Çoşut B., Keşan G., Açık L., Çam M., Tunalı B. Ç., Türk M., Hökelek T., Synthesis of Bis(2,2,3,3-tetrafluoro-1,4-butanedialkoxy)-2-trans-6-bis(4-fluorobenzyl)spiro cyclotetraphosphazene: Structural Characterization, Biological Activity and DFT Studies, J. Chem. Crystallogr., 51 (2020) 235-250.
  • [25] Asmafiliz N., Kılıç Z., Öztürk A., Hökelek T., Koç L. Y., Açık L., Kısa Ö., Albay A., Üstündağ Z., Solak A. O., Phosphorus−Nitrogen Compounds. 18. Syntheses, stereogenic properties, structural and electrochemical investigations, biological activities, and DNA interactions of new spirocyclic Mono- and bisferrocenylphosphazene derivatives, Inorg. Chem., 48 (21) (2009) 10102-10116.
  • [26] Okumuş A., Elmas G., Cemaloğlu R., Aydın B., Binici A., Şimşek H., Açık L., Türk M., Güzel R., Kılıç Z., Hökelek T., Phosphorus-Nitrogen Compounds. Part 35. Syntheses, spectroscopic and electrochemical properties, antituberculosis, antimicrobial and cytotoxic activities of mono-ferrocenyl-spirocyclotetraphosphazenes, New J. Chem., 40 (2016) 5588-5603.
  • [27] Elmas G., Okumuş A., Kılıç Z., Özbeden P., Açık L., Tunalı B. Ç., Türk M., Çerçi N. A., Hökelek T., Phosphorus-nitrogen compounds. Part 48. Syntheses of the phosphazenium salts containing 2-pyridyl pendant arm: Structural characterizations, thermal analysis, antimicrobial and cytotoxic activity studies, Indian J. Chem. Sec. A, 59A (2020) 533-550.
  • [28] Elmas G., Okumuş A., Koç L. Y., Soltanzade H., Kılıç Z., Hökelek T., Dal H., Açık L., Üstündağ Z., Dündar D., Yavuz M., Phosphorus-Nitrogen Compounds. Part 29. Syntheses, crystal structures, spectroscopic and stereogenic properties, electrochemical investigations, antituberculosis, antimicrobial and cytotoxic activities and DNA interactions of ansa-spiro-ansa cyclotetraphosphazenes, Eur. J. Med. Chem., 87 (2014) 662-676.
  • [29] Okumus A., Elmas G., Kılıç Z., Binici A., Ramazanoğlu N., Açık L., Çoşut B., Hökelek T., Güzel R., Tunalı B. Ç., Türk M., Şimşek H., The comparative reactions of 2‐ cis ‐4‐ansa and spiro cyclotetraphosphazenes with difunctional ligands: Structural and stereogenic properties, electrochemical, antimicrobial and cytotoxic activity studies, App. Organomet Chem., e6150 (2021) 1-28.
  • [30] Binici A., Okumus A., Elmas G., Kılıç Z., Ramazanoğlu N., Açık L., Şimşek H., Tunalı B. Ç., Türk M., Güzel R., Hökelek T., Phosphorus-nitrogen compounds. Part 42. The comparative syntheses of 2-cis-4-ansa(N/O) and spiro(N/O) cyclotetraphosphazene derivatives: spectroscopic and crystallographic characterization, antituberculosis and cytotoxic activity studies, New J. Chem., 43 (2019) 6856-6873.
  • [31] Binici A., Okumus A., Yakut M., Elmas G., Kılıç Z., Koyunoğlu D., Açık L., Şimşek H., Phosphorus-nitrogen compounds. Part 56. Comparative syntheses and spectral properties of multiheterocyclic 2-cis-4-ansa and spiro-ferrocenyl (N/O)cyclotetraphosphazenes: Antituberculosis and antimicrobial activity and DNA interaction studies, Phosphorus, Sulfur Silicon Relat. Elem., (2021)
  • [32] Elmas G., Okumuş A., Hökelek T., Kılıç Z., Phosphorus-Nitrogen Compounds. Part 52. The reactions of octachlorocyclotetraphosphazene with sodium 3-(N-ferrocenylmethylamino)-1-propanoxide: investigations of spectroscopic, crystallographic and stereogenic properties, Inorg. Chim. Acta, 497 (11) (2019) 119106.
  • [33] Elmas G., The reactions of 2-trans-6-bis(4-fluorobenzyl)spirocyclotetraphosphazene with primary amines: spectroscopic and crystallographic characterizations, Phosphorus Sulfur Silicon Relat. Elem., 192 (11) (2017) 1224-1232.
  • [34] Carriedo G. A., Alonso F. G., Gonzalez P. A., Menendez J. R., Infrared and Raman spectra of the phosphazene high polymer [NP(O2C12H8)]n, J. Raman Spectrosc., 29 (1998) 327-330.
  • [35] Elmas G., Syntheses and spectroscopic investigations of 2-pyridyl(N/N)spirocyclotriphosphazenes, J. Turk. Chem. Soc. Sect. A: Chem., 5(2) (2018) 621-634.
  • [36] Mutlu Ö. F., Binici A., Okumuş A., Elmas G., Cosut B., Kılıç Z., Hökelek T., Phosphorus-nitrogen Compounds. Part 54. Syntheses of Chiral Amino-4-fluorobenzyl-spiro(N/O)cyclotriphosphazenes: Structural and Stereogenic Properties, New J. Chem., 45 (2021) 12178-12192.
  • [37] Binici A., Elmas G., Okumus A., Tayhan, S. E., Hökelek, T., Şeker, B. N., Açık, L., Kılıç Z., Phosphorus-nitrogen compounds. Part 58. Syntheses, structural characterizations and biological activities of 4-fluorobenzyl-spiro(N/O)cyclotriphosphazene derivatives, J. Biomol. Struc.& Dyn., (2021).
  • [38] World Health organization, Tuberculosis. Key facts. Available at: https://www.who.int/news-room/fact-sheets/detail/tuberculosis. Retrieved October 14, 2021.
  • [39] Clinical and Laboratory Standards Institute, M24-A2, Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Approved Standard-Second Edition, (2011).
There are 39 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Arzu Binici 0000-0001-7470-4156

Publication Date June 29, 2022
Submission Date December 20, 2021
Acceptance Date April 9, 2022
Published in Issue Year 2022Volume: 43 Issue: 2

Cite

APA Binici, A. (2022). Syntheses of Hexaminomonoferrocenylspiro(N/O)cyclotetraphosphazenes: Spectral Properties and Antituberculosis Activities. Cumhuriyet Science Journal, 43(2), 193-200.