Research Article
BibTex RIS Cite

Altering Electrical Features of LuFeO3 Compound Via Ir Doping into Fe Sites

Year 2022, Volume: 43 Issue: 2, 333 - 341, 29.06.2022
https://doi.org/10.17776/csj.1037574

Abstract

Three ceramic compounds, LuFeO3, LuFe0.95Ir0.05O3, and LuFe0.90Ir0.10O3, were fabricated via using solid-state reaction technique. Scanning electron microscopy (SEM) analyses have shown the porous nature of the samples. The loss-tan(δ) of Ir substituted compounds are less than the undoped sample at frequencies > 105 Hz. The impedance study has revealed the Ir substituted samples have higher impedance values. Z″ and M″ vs frequency plots unveiled the existence of a non-Debye relaxation with short-range migration of carriers in the examined compounds. It has been shown 5 mol % Ir substituted specimen holds the maximum resistivity at 100 0C. Scanning electron microscopy has been utilized to study surface morphology.

Supporting Institution

The Scientific and Technological Research Council of Turkey (TUBITAK)

Project Number

116F025

Thanks

The author would like to thank Prof. Dr. Abdulmecit Turut, Prof. Dr. Mujdat Caglar, Assoc. Prof. Mustafa Coskun, and Assoc. Prof. Zehra Durmus for their valuable comments.

References

  • [1] Luo S.J., Li S.Z., Zhang N., Wei T., Dong X.W., Wang K.F., Liu J.M., Preparation of epitaxial DyFeO3 thin films and magnetodielectric coupling, Thin Solid Films, 519 (2010) 240.
  • [2] Pomiro F., Sanchez R.D., Cuello G., Maignan A., Martin C., Carbonio R. E., Spin reorientation, magnetization reversal, and negative thermal expansion observed in RFe0.5Cr0.5O3 perovskites (R=Lu,Yb,Tm), Phys. Rev. B., 94 (2016) 134402.
  • [3] Mandal P., Bhadram V.S., Sundarayya Y., Narayana C., Sundaresan A., Rao C. N. R., Spin-reorientation, ferroelectricity, and magnetodielectric effect in YFe1-xMnxO3 (00.1 ≤ x ≤ 0.40), Phys Rev. Lett., 107(13) (2011) 137202.
  • [4] Yokota H., Nozue T., Nakamura S., Hojo H., Fukunaga M., Janolin P.-E., Kiat J.-M., Fuwa A., Ferroelectricity and weak ferromagnetism of hexagonal ErFeO3 thin films, Phys. Rev. B., 92(5) (2015) 054101.
  • [5] Song Y.-Q., Zhou W.-P., Fang Y., Yang Y.-T., Wang L.-Y., Wang D.-H., Du Y.-W., Multiferroic properties in terbium orthoferrite, Chin. Phys. B., 23 (2014) 077505.
  • [6] Polat O., Coskun M., Coskun F. M., Kurt B. Z., Durmus Z., Caglar Y., Caglar M., Turut A., Electrical characterization of Ir doped rare-earth orthoferrite YbFeO3, Journal of Alloys and Compounds, 787 (2019) 1212-1224.
  • [7] Coskun M., Polat O., Coskun F. M., Kurt B. Z., Durmus Z., Caglar M., Turut A., The Impact of Ir Doping on the Electrical Properties of YbFe1-xIrxO3 Perovskite-Oxide Compounds, J. Mater. Sci.: Mater. Electron., 31 (2020) 1731.
  • [8] Polat O., M. Coskun, Kalousek R., Zlamal J., Kurt B. Z., Caglar Y., Caglar M., Turut A., Frequency and Temperature-Dependent Electric Modulus Spectroscopy of Os Doped YbFeO3-ẟ Structure, J. Phys.: Condens. Matter., 32 (2020) 065701.
  • [9] Polat O., Caglar M., Coskun F. M., Coskun M., Caglar Y., Turut A., An investigation of the optical properties of YbFe1-xIrxO3-ẟ (x=0, 0.01 and 0.10) orthoferrite films, Vacuum, 173 (2020) 109124.
  • [10] Polat O., Caglar M., Coskun F. M., Coskun M., Caglar Y., Turut A., Examination of Optical Properties of YbFeO3 films via Doping Transition Element Osmium, Optical Materials, 105 (2020) 109911.
  • [11] Polat O., Caglar M., Coskun F. M., Coskun M., Caglar Y., Turut A., An Experimental Investigation: The Impact of Cobalt Doping on Optical Properties of YbFeO3-ẟ Thin Film, Mater. Res. Bull., 119 (2019) 110567.
  • [12] Polat O., Coskun M., Coskun F. M., Zlamal J., Kurt B. Z., Durmus Z., Caglar M., Turut A., Co doped YbFeO3: exploring the electrical properties via tuning the doping level, Ionics, 25 (2019) 4013–4029.
  • [13] Liferovich R. P., Mitchell R. H., A structural study of ternary lanthanide orthoscandate perovskites, J. Solid. State. Chem., 177 (2004) 2188.
  • [14] Magome E., Moriyoshi C., Kuroiwa Y., Masuno A., Inoue H., Noncentrosymmetric Structure of LuFeO3 in Metastable State, Japan. J. Appl. Phys., 49 (2010) 09ME06.
  • [15] Leelashree S., Srinath S., Investigation of Structural, Ferroelectric, and Magnetic Properties of La-Doped LuFeO3 Nanoparticles, J. Supercond. Nov. Magn., 33 (2020) 1587–1591.
  • [16] Wang W.B., Zhao J., Wang W.B., Gai Z., Balke N., Chi M.F., Lee H.N., Tian W., Zhu L., Cheng X.M., Keavney D.J., Yi J.Y., Ward T.Z., Snijders P.C., Christen H.M., Wu W.D., Shen J., Xu X.S., Room-temperature multiferroic hexagonal LuFeO3 films, Phys. Rev. Lett., 110 (2013) 237601.
  • [17] Coskun M., Synthesis, Characterization and Electrical Admittance Study of LaCrO3 Perovskite Compound, Int. J. Adv. Eng. Pure Sci. 1 (2019) 29-35.
  • [18] Holinsworth B.S., Mazumdar D., Brooks C.M., Mundy J.A., Das H., Cherian J.G., McGill S.A., Fennie C.J., Schlom D.G., Musfeldt J.L., Direct band gaps in multiferroic h-LuFeO3, Appl. Phys. Lett., 106 (2015) 082902.
  • [19] Zhu L.P., Deng H.M., Sun L., Yang J., Yang P.X., Chu J.H., Optical properties of multiferroic LuFeO3 ceramics, Ceram. Int., 40 (2014) 1171-1175.
  • [20]Zhou M., Yang H., Xian T., Zhang C.R., A new photocatalyst of LuFeO3 for the dye degradation, Phys. Scripta, 90 (2015) 085808.
  • [21] Suresh P., Laxmi K. V., Kumar P.S., Enhanced room temperature multiferroic characteristics in hexagonal LuFe1−xNixO3 (x = 0 − 0.3) nanoparticles, J. Magn. Magn. Mater., 448 (2018) 117-122.
  • [22] Sarkar T., Manna K., Elizabeth S., Anil Kumar P.S., Investigation of multiferroicity, spin-phonon coupling, and unusual magnetic ordering close to room temperature in LuMn0.5Fe0.5O3, J. Appl. Phys., 121 (2017) 084102.
  • [23]Lurgo F. E., Billoni O. V., Pomjakushin V., Bolletta J. P., Martin C., Maignan A., Carbonio R. E., Signs of superparamagnetic cluster formation in LuFe1−xCrxO3 perovskites evidenced by magnetization reversal and Monte Carlo simulations, Phys. Rev. B, 103 (2021) 014447.
  • [24] Lin L., Zhang H. M., Liu M. F., Shen S., Zhou S., Li D., Wang X.,. Yan Z. B, Zhang Z. D., Zhao J., Dong S., Liu J.M., Hexagonal phase stabilization and magnetic orders of multiferroic Lu1−xScxFeO3, Phys. Rev. B, 93 (2016) 075146.
  • [25]Liu J., Sun T.L., Liu X.Q., Tian H., Gao T.T., Chen X.M., A novel room-temperature multiferroic system of hexagonal Lu1−xInxFeO3, Adv. Funct. Mater., 28 (2018) 1706062.
  • [26]Leelashree S., Srinath S., Investigation of structural, ferroelectric, and magnetic properties of La-doped LuFeO3 nanoparticles, J. Supercond. Nov. Magnetism, 33 (2019) 1587-1591.
  • [27] Polat O., Altering magnetic and optical features of rare earth orthoferrite LuFeO3 ceramics via substitution of Ir into Fe sites, Journal of Solid State Chemistry, 305 (2022) 122701.
  • [28]Polat O., Coskun M., Roupcová P., Sobala D., Durmus Z., Caglar M., Sikola T., Turut A., Influence of iridium (Ir) doping on the structural, electrical, and dielectric properties of LuFeO3 perovskite compound, Journal of Alloys and Compounds, 877 (2021)160282.
  • [29]Pattanayak S., Parida B.N., Das P. R., Choudhary R.N.P., Impedance spectroscopy of Gd-doped BiFeO3 multiferroics. Appl. Phys. A, 112 (2013) 387.
  • [30]Jonscher A. K., The ‘universal’ dielectric response, Nature, 267 (1977) 673.
  • [31] Petrovsky V., Manohar A., Dogan F., Dielectric constant of particles determined by impedance spectroscopy, J. Appl. Phys., 100 (2006) 014102.
  • [32]Cheng P. F., Song J., Wang Q. P., Li S. T., Li J.Y., Wu K.N., Fine representation of dielectric properties by impedance spectroscopy, Journal of Alloys and Compounds, 740 (2018) 36-41.
  • [33]Sekrafi H. E., Kharrata A. B. J., Wederni M.A., Khirouni K., Boudjadaa N. C., Boujelben W., Structural, electrical, dielectric properties and conduction mechanism of solgel prepared Pr0.75Bi0.05Sr0.1Ba0.1Mn0.98Ti0.02O3 compound, Mater. Res. Bull., 111 (2019) 329–337.
  • [34] James A. R, Srinivas K., Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics, Mater. Res. Bull., 34 (1999) 1301.
  • [35]Sinclair D.C., West A.R, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance, J. Appl. Phys., 66 (1989) 3850.
  • [36]Auwal I.A., Erdemi H., Sözeri H., Güngüneş H., Baykal A., Magnetic and dielectric properties of Bi3+ substituted SrFe12O19 hexaferrite, J. Magn. Magn. Mater., 412 (2016) 69-82.
  • [37] Keelani A. O. A., Husain S., Khan W., Temperature dependent dielectric properties and ac conductivity of GdFe1−xMnxO3 (0 ≤ x ≤ 0.3) perovskites, J. Mater. Sci.: Mater. Electron., 30 (2019) 20119–20131.
  • [38]Polat O., Coskun M., Roupcová P., Sobala D., Durmus Z., Caglar M., Sikola T., Turut A., The Os substitution into Fe sites in LuFeO3 multiferroic and its effects on the electrical and dielectric properties, Journal of Alloys and Compounds 911, (2022) 165035.
Year 2022, Volume: 43 Issue: 2, 333 - 341, 29.06.2022
https://doi.org/10.17776/csj.1037574

Abstract

Project Number

116F025

References

  • [1] Luo S.J., Li S.Z., Zhang N., Wei T., Dong X.W., Wang K.F., Liu J.M., Preparation of epitaxial DyFeO3 thin films and magnetodielectric coupling, Thin Solid Films, 519 (2010) 240.
  • [2] Pomiro F., Sanchez R.D., Cuello G., Maignan A., Martin C., Carbonio R. E., Spin reorientation, magnetization reversal, and negative thermal expansion observed in RFe0.5Cr0.5O3 perovskites (R=Lu,Yb,Tm), Phys. Rev. B., 94 (2016) 134402.
  • [3] Mandal P., Bhadram V.S., Sundarayya Y., Narayana C., Sundaresan A., Rao C. N. R., Spin-reorientation, ferroelectricity, and magnetodielectric effect in YFe1-xMnxO3 (00.1 ≤ x ≤ 0.40), Phys Rev. Lett., 107(13) (2011) 137202.
  • [4] Yokota H., Nozue T., Nakamura S., Hojo H., Fukunaga M., Janolin P.-E., Kiat J.-M., Fuwa A., Ferroelectricity and weak ferromagnetism of hexagonal ErFeO3 thin films, Phys. Rev. B., 92(5) (2015) 054101.
  • [5] Song Y.-Q., Zhou W.-P., Fang Y., Yang Y.-T., Wang L.-Y., Wang D.-H., Du Y.-W., Multiferroic properties in terbium orthoferrite, Chin. Phys. B., 23 (2014) 077505.
  • [6] Polat O., Coskun M., Coskun F. M., Kurt B. Z., Durmus Z., Caglar Y., Caglar M., Turut A., Electrical characterization of Ir doped rare-earth orthoferrite YbFeO3, Journal of Alloys and Compounds, 787 (2019) 1212-1224.
  • [7] Coskun M., Polat O., Coskun F. M., Kurt B. Z., Durmus Z., Caglar M., Turut A., The Impact of Ir Doping on the Electrical Properties of YbFe1-xIrxO3 Perovskite-Oxide Compounds, J. Mater. Sci.: Mater. Electron., 31 (2020) 1731.
  • [8] Polat O., M. Coskun, Kalousek R., Zlamal J., Kurt B. Z., Caglar Y., Caglar M., Turut A., Frequency and Temperature-Dependent Electric Modulus Spectroscopy of Os Doped YbFeO3-ẟ Structure, J. Phys.: Condens. Matter., 32 (2020) 065701.
  • [9] Polat O., Caglar M., Coskun F. M., Coskun M., Caglar Y., Turut A., An investigation of the optical properties of YbFe1-xIrxO3-ẟ (x=0, 0.01 and 0.10) orthoferrite films, Vacuum, 173 (2020) 109124.
  • [10] Polat O., Caglar M., Coskun F. M., Coskun M., Caglar Y., Turut A., Examination of Optical Properties of YbFeO3 films via Doping Transition Element Osmium, Optical Materials, 105 (2020) 109911.
  • [11] Polat O., Caglar M., Coskun F. M., Coskun M., Caglar Y., Turut A., An Experimental Investigation: The Impact of Cobalt Doping on Optical Properties of YbFeO3-ẟ Thin Film, Mater. Res. Bull., 119 (2019) 110567.
  • [12] Polat O., Coskun M., Coskun F. M., Zlamal J., Kurt B. Z., Durmus Z., Caglar M., Turut A., Co doped YbFeO3: exploring the electrical properties via tuning the doping level, Ionics, 25 (2019) 4013–4029.
  • [13] Liferovich R. P., Mitchell R. H., A structural study of ternary lanthanide orthoscandate perovskites, J. Solid. State. Chem., 177 (2004) 2188.
  • [14] Magome E., Moriyoshi C., Kuroiwa Y., Masuno A., Inoue H., Noncentrosymmetric Structure of LuFeO3 in Metastable State, Japan. J. Appl. Phys., 49 (2010) 09ME06.
  • [15] Leelashree S., Srinath S., Investigation of Structural, Ferroelectric, and Magnetic Properties of La-Doped LuFeO3 Nanoparticles, J. Supercond. Nov. Magn., 33 (2020) 1587–1591.
  • [16] Wang W.B., Zhao J., Wang W.B., Gai Z., Balke N., Chi M.F., Lee H.N., Tian W., Zhu L., Cheng X.M., Keavney D.J., Yi J.Y., Ward T.Z., Snijders P.C., Christen H.M., Wu W.D., Shen J., Xu X.S., Room-temperature multiferroic hexagonal LuFeO3 films, Phys. Rev. Lett., 110 (2013) 237601.
  • [17] Coskun M., Synthesis, Characterization and Electrical Admittance Study of LaCrO3 Perovskite Compound, Int. J. Adv. Eng. Pure Sci. 1 (2019) 29-35.
  • [18] Holinsworth B.S., Mazumdar D., Brooks C.M., Mundy J.A., Das H., Cherian J.G., McGill S.A., Fennie C.J., Schlom D.G., Musfeldt J.L., Direct band gaps in multiferroic h-LuFeO3, Appl. Phys. Lett., 106 (2015) 082902.
  • [19] Zhu L.P., Deng H.M., Sun L., Yang J., Yang P.X., Chu J.H., Optical properties of multiferroic LuFeO3 ceramics, Ceram. Int., 40 (2014) 1171-1175.
  • [20]Zhou M., Yang H., Xian T., Zhang C.R., A new photocatalyst of LuFeO3 for the dye degradation, Phys. Scripta, 90 (2015) 085808.
  • [21] Suresh P., Laxmi K. V., Kumar P.S., Enhanced room temperature multiferroic characteristics in hexagonal LuFe1−xNixO3 (x = 0 − 0.3) nanoparticles, J. Magn. Magn. Mater., 448 (2018) 117-122.
  • [22] Sarkar T., Manna K., Elizabeth S., Anil Kumar P.S., Investigation of multiferroicity, spin-phonon coupling, and unusual magnetic ordering close to room temperature in LuMn0.5Fe0.5O3, J. Appl. Phys., 121 (2017) 084102.
  • [23]Lurgo F. E., Billoni O. V., Pomjakushin V., Bolletta J. P., Martin C., Maignan A., Carbonio R. E., Signs of superparamagnetic cluster formation in LuFe1−xCrxO3 perovskites evidenced by magnetization reversal and Monte Carlo simulations, Phys. Rev. B, 103 (2021) 014447.
  • [24] Lin L., Zhang H. M., Liu M. F., Shen S., Zhou S., Li D., Wang X.,. Yan Z. B, Zhang Z. D., Zhao J., Dong S., Liu J.M., Hexagonal phase stabilization and magnetic orders of multiferroic Lu1−xScxFeO3, Phys. Rev. B, 93 (2016) 075146.
  • [25]Liu J., Sun T.L., Liu X.Q., Tian H., Gao T.T., Chen X.M., A novel room-temperature multiferroic system of hexagonal Lu1−xInxFeO3, Adv. Funct. Mater., 28 (2018) 1706062.
  • [26]Leelashree S., Srinath S., Investigation of structural, ferroelectric, and magnetic properties of La-doped LuFeO3 nanoparticles, J. Supercond. Nov. Magnetism, 33 (2019) 1587-1591.
  • [27] Polat O., Altering magnetic and optical features of rare earth orthoferrite LuFeO3 ceramics via substitution of Ir into Fe sites, Journal of Solid State Chemistry, 305 (2022) 122701.
  • [28]Polat O., Coskun M., Roupcová P., Sobala D., Durmus Z., Caglar M., Sikola T., Turut A., Influence of iridium (Ir) doping on the structural, electrical, and dielectric properties of LuFeO3 perovskite compound, Journal of Alloys and Compounds, 877 (2021)160282.
  • [29]Pattanayak S., Parida B.N., Das P. R., Choudhary R.N.P., Impedance spectroscopy of Gd-doped BiFeO3 multiferroics. Appl. Phys. A, 112 (2013) 387.
  • [30]Jonscher A. K., The ‘universal’ dielectric response, Nature, 267 (1977) 673.
  • [31] Petrovsky V., Manohar A., Dogan F., Dielectric constant of particles determined by impedance spectroscopy, J. Appl. Phys., 100 (2006) 014102.
  • [32]Cheng P. F., Song J., Wang Q. P., Li S. T., Li J.Y., Wu K.N., Fine representation of dielectric properties by impedance spectroscopy, Journal of Alloys and Compounds, 740 (2018) 36-41.
  • [33]Sekrafi H. E., Kharrata A. B. J., Wederni M.A., Khirouni K., Boudjadaa N. C., Boujelben W., Structural, electrical, dielectric properties and conduction mechanism of solgel prepared Pr0.75Bi0.05Sr0.1Ba0.1Mn0.98Ti0.02O3 compound, Mater. Res. Bull., 111 (2019) 329–337.
  • [34] James A. R, Srinivas K., Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics, Mater. Res. Bull., 34 (1999) 1301.
  • [35]Sinclair D.C., West A.R, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance, J. Appl. Phys., 66 (1989) 3850.
  • [36]Auwal I.A., Erdemi H., Sözeri H., Güngüneş H., Baykal A., Magnetic and dielectric properties of Bi3+ substituted SrFe12O19 hexaferrite, J. Magn. Magn. Mater., 412 (2016) 69-82.
  • [37] Keelani A. O. A., Husain S., Khan W., Temperature dependent dielectric properties and ac conductivity of GdFe1−xMnxO3 (0 ≤ x ≤ 0.3) perovskites, J. Mater. Sci.: Mater. Electron., 30 (2019) 20119–20131.
  • [38]Polat O., Coskun M., Roupcová P., Sobala D., Durmus Z., Caglar M., Sikola T., Turut A., The Os substitution into Fe sites in LuFeO3 multiferroic and its effects on the electrical and dielectric properties, Journal of Alloys and Compounds 911, (2022) 165035.
There are 38 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Özgür Polat 0000-0002-7410-1272

Project Number 116F025
Publication Date June 29, 2022
Submission Date December 16, 2021
Acceptance Date May 9, 2022
Published in Issue Year 2022Volume: 43 Issue: 2

Cite

APA Polat, Ö. (2022). Altering Electrical Features of LuFeO3 Compound Via Ir Doping into Fe Sites. Cumhuriyet Science Journal, 43(2), 333-341. https://doi.org/10.17776/csj.1037574