Research Article
BibTex RIS Cite
Year 2022, Volume: 43 Issue: 2, 257 - 265, 29.06.2022
https://doi.org/10.17776/csj.1015872

Abstract

Supporting Institution

Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Proje Destek Fonu

Project Number

M-767

Thanks

Yazarlar, desteklerinden dolayı Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Proje Destek Fonu'na teşekkür eder.

References

  • [1] Kim I.H., Singh B., Lim J.W., Song S.J., Determination of partial conductivities and electrolytic domain of yttrium-doped zirconia prepared from Indonesian zircon sand, Journal of Ceramic Processing Research, 19(2) (2018) 134-141.
  • [2] Kosmač T., Oblak C., Jevnikar P., Funduk N., Marion L., The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic, Dental Materials, 15(6) (1999) 426-433.
  • [3] Gupta T.K., Bechtold J.H., Kuznicki R.C., Cadoff L.H., Rossing B.R., Stabilization of tetragonal phase in polycrystalline zirconia, Journal of Materials Science, 12(12) (1977) 2421-2426.
  • [4] Rao P.G., Iwasa M., Tanaka T., Kondoh I., Inoue T., Preparation and mechanical properties of Al2O3–15wt.% ZrO2 composites, Scripta Materialia, 48(4) (2003) 437-441.
  • [5] Garvie R.C., Nicholson P.S., Phase analysis in zirconia systems, Journal of the American Ceramic Society, 55(6) (1972) 303-305.
  • [6] Tsukuma K., Shimada M., Strength, fracture toughness and Vickers hardness of CeO 2-stabilized tetragonal ZrO 2 polycrystals (Ce-TZP), Journal of Materials Science, 20(4) (1985) 1178-1184.
  • [7] Deville S., El Attaoui H., Chevalier J., Atomic force microscopy of transformation toughening in ceria-stabilized zirconia, Journal of the European Ceramic Society, 25(13) (2005) 3089-3096.
  • [8] Hughan R.R., Hannink R.H., Precipitation During Controlled Cooling of Magnesia‐Partially‐Stabilized Zirconia, Journal of the American Ceramic Society, 69(7) (1986) 556-563.
  • [9] Sakuma T., Microstructural aspects on the cubic-tetragonal transformation in zirconia, In Key Engineering Materials,153 (1998) 75-96.
  • [10] Czeppe T., Ziȩba P., Pawłowski A, Crystallographic and microchemical characterization of the early stages of eutectoid decomposition in MgO-partially stabilized ZrO2, Journal of the European Ceramic Society, 22(8) (2002) 1389-1394.
  • [11] Aguilar D.H., Torres-Gonzalez L.C., Torres-Martinez L.M., Lope T., Quintana P., A study of the crystallization of ZrO2 in the sol–gel system: ZrO2–SiO2, Journal of Solid State Chemistry, 158(2) (2001) 349-357.
  • [12] Vasanthavel S., Nandha Kumar P., Kannan S., Quantitative analysis on the influence of SiO 2 content on the phase behavior of ZrO 2, Journal of the American Ceramic Society, 97(2) (2014) 635-642.
  • [13] Vasanthavel S., Derby B., Kannan S., Tetragonal to cubic transformation of SiO2-stabilized ZrO2 polymorph through dysprosium substitutions, Inorganic Chemistry, 56(3) (2017) 1273-1281.
  • [14] Lin C.L., Gan D., Shen P., Stabilization of zirconia sintered with titanium, Journal of the American Ceramic Society, 71(8) (1988) 624-629.
  • [15] Bukhari S.B., Imran M., Bashir M., Riaz S., Naseem S., Room temperature stabilized TiO2 doped ZrO2 thin films for teeth coatings–A sol-gel approach, Journal of Alloys and Compounds, 767 (2018) 1238-1252.
  • [16] Annenkov Y.M., Aparov N.N., Frangul’yan T.S., Voznya A.V., Gornostaev A.M., Effect of a stabilizing y 2 O 3 additive on the strength properties of zirconia ceramics sintered from plasma chemical powders, Glass and ceramics, 54(11-12) (1997) 401-403.
  • [17] Yoshimura M., Oh S.T., Sando M., Niihara K., Crystallization and microstructural characterization of ZrO2 (3 mol% Y2O3) nano-sized powders with various Al2O3 contents, Journal of Alloys and Compounds, 290(1-2) (1999), 284-289.
  • [18] Moon J., Choi H., Kim H., Lee C., The effects of heat treatment on the phase transformation behavior of plasma-sprayed stabilized ZrO2 coatings, Surface and Coatings Technology, 155(1) (2002) 1-10.
  • [19] Zhang Y.L., Jin X. J., Rong Y.H., Hsu T.Y., Jiang D.Y., Shi J.L., On the t→ m martensitic transformation in Ce–Y-TZP ceramics, Acta Materialia, 54(5) (2006) 1289-1295.
  • [20] Cutler R.A., Reynolds J.R., Jones A., Sintering and characterization of polycrystalline monoclinic, tetragonal, and cubic zirconia, Journal of the American Ceramic Society, 75(8) (1992) 2173-2183.
  • [21] Govila R.K., Strength characterization of yttria-partially stabilized zirconia, Journal Of Materials Science, 30(10) (1995) 2656-2667.
  • [22] Liu P.F., Li Z., Xiao P., Luo H., Jiang T.H., Microstructure and mechanical properties of in-situ grown mullite toughened 3Y-TZP zirconia ceramics fabricated by gelcasting, Ceramics International, 44(2) (2018) 1394-1403.
  • [23] Duszová A., Dusza J., Tomášek K., Blugan G., Kuebler, J., Microstructure and properties of carbon nanotube/zirconia composite, Journal of the European Ceramic Society, 28(5) (2008) 1023-1027.
  • [24] Eichler J., Rödel J., Eisele U., Hoffman M., Effect of grain size on mechanical properties of submicrometer 3Y‐TZP: fracture strength and hydrothermal degradation, Journal of the American Ceramic Society, 90(9) (2007) 2830-2836.
  • [25] Sun J., Gao L., Iwasa M., Nakayama T., Niihara K., Failure investigation of carbon nanotube/3Y-TZP nanocomposites, Ceramics International, 31(8) (2005) 1131-1134.
  • [26] Şenel M.C., Fabrication of aluminum matrix hybrid composites reinforced with graphene-ceramic particles by powder metallurgy method and investigation of their mechanical and microstructural properties, PhD thesis, Ondokuz Mayıs University, Graduate School of Natural and Applied Sciences, 2018.
  • [27] Kucuk I., Boyraz T., Structural and mechanical characterization of mullite and aluminium titanate reinforced yttria stabilized zirconia ceramic composites, Journal of Ceramic Processing Research, 20(1) (2019) 73-79.
  • [28] Kumar P., Nath M., Ghosh A., Tripathi H.S., Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide, Materials Characterization, 101 (2015) 34-39.
  • [29] Denry I., Kelly J.R., State of the art of zirconia for dental applications, Dental materials, 24(3) (2008) 299-307.
  • [30] Akkus A., Boyraz T., Investigation of wear properties of CaO, MgO added stabilized zirconia ceramics produced by different pressing methods, J. Ceram. Process Res., 19(3) (2018) 249-52.
  • [31] Huang Y.Q., Li Z., Liu P.F., Huan T.X., Li Y., Xiao P., Tribological properties of Mullite/3Y-TZP ceramics with different content of mullite fabricated by gel-casting, Applied Surface Science, 476 (2019) 232-241.
  • [32] Boyraz T., An investigation on physical and electrical properties of CaO/MgO-stabilized zirconia ceramics formed with different methods, PhD thesis, Istanbul Technical University, Graduate School of Natural and Applied Sciences, 2008.
  • [33] Boyraz T., Thermal Properties and Microstructural Characterization of Aluminium Titanate (Al2TiO5)/La2O3-Stabilized Zirconia (ZrO2) Ceramics, Cumhuriyet Science Journal, 39(1) (2018) 243-249.
  • [34] Çitak E., Boyraz T., Microstructural characterization and thermal properties of aluminium titanate/YSZ Ceramics, Acta Physica Polonica A, 125(2) (2014) 465-468.
  • [35] Boyraz T., Akkuş A., Investigation of wear properties of mullite and aluminium titanate added porcelain ceramics, Journal of Ceramic Processing Research, 22(2) (2021) 226-231.
  • [36] Hafızoğlu M.A., Boyraz T., Akkuş A., Fabrication, characterization and wear properties of mullite reinforced silica-doped zirconia ceramic composites, 4. Internatinonal Conference on Materials Science, Mechanical and Automotive Engineerings and Technology (IMSMATEC’21), Nevşehir, 2021, 175-180.
  • [37] Hafızoğlu M.A., Akkuş A., Boyraz T., Fabrication, characterization and wear properties of mullite reinforced Al2O3-doped ZrO2 ceramic composites, Global Conference on Engineering Research (GLOBCER’21), Bandırma (Balıkesir), 2021, 673-686.

The Effect of Mullite Addition on Wear Properties of SiO2 Doped ZrO2 Ceramics

Year 2022, Volume: 43 Issue: 2, 257 - 265, 29.06.2022
https://doi.org/10.17776/csj.1015872

Abstract

Mullite (3Al2O3.2SiO2) and 10 mol% silica added zirconia (10 mol% SiO2 - 90 mol% ZrO2) ceramic powders were synthesized by conventional ceramic processing route. The mixtures were prepared by mechanical alloying method using zirconia ball mill in acetone environment. To synthesize mullite, Al2O3 and SiO2 powders mixture was prepared with stoichiometric proportions and fired it in the air at 1600 oC for 3 h. And the silica added zirconia composites were fired at 1300 oC for 2 h. Thus, silica - zirconia and mullite composite phases were obtained and milling and sieving processes were carried out. Then, mullite-free and 10% by weight mullite reinforced silicon oxide added zirconia mixtures were prepared by powder metallurgy method. The powders were compacted by uniaxial pressing. The formed samples were sintered in a high temperature furnace in air conditions for 1 and 5 h at 1500 and 1600 oC sintering temperatures. Finally, microstructure examinations of the composites with SEM, phase analysis with XRD, hardness, three-point bending and wear tests were performed. In addition, the results of water absorption, porosity and density from physical properties and the effect of mullite additive on the mechanical and especially wear properties of this mixture were investigated.

Project Number

M-767

References

  • [1] Kim I.H., Singh B., Lim J.W., Song S.J., Determination of partial conductivities and electrolytic domain of yttrium-doped zirconia prepared from Indonesian zircon sand, Journal of Ceramic Processing Research, 19(2) (2018) 134-141.
  • [2] Kosmač T., Oblak C., Jevnikar P., Funduk N., Marion L., The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic, Dental Materials, 15(6) (1999) 426-433.
  • [3] Gupta T.K., Bechtold J.H., Kuznicki R.C., Cadoff L.H., Rossing B.R., Stabilization of tetragonal phase in polycrystalline zirconia, Journal of Materials Science, 12(12) (1977) 2421-2426.
  • [4] Rao P.G., Iwasa M., Tanaka T., Kondoh I., Inoue T., Preparation and mechanical properties of Al2O3–15wt.% ZrO2 composites, Scripta Materialia, 48(4) (2003) 437-441.
  • [5] Garvie R.C., Nicholson P.S., Phase analysis in zirconia systems, Journal of the American Ceramic Society, 55(6) (1972) 303-305.
  • [6] Tsukuma K., Shimada M., Strength, fracture toughness and Vickers hardness of CeO 2-stabilized tetragonal ZrO 2 polycrystals (Ce-TZP), Journal of Materials Science, 20(4) (1985) 1178-1184.
  • [7] Deville S., El Attaoui H., Chevalier J., Atomic force microscopy of transformation toughening in ceria-stabilized zirconia, Journal of the European Ceramic Society, 25(13) (2005) 3089-3096.
  • [8] Hughan R.R., Hannink R.H., Precipitation During Controlled Cooling of Magnesia‐Partially‐Stabilized Zirconia, Journal of the American Ceramic Society, 69(7) (1986) 556-563.
  • [9] Sakuma T., Microstructural aspects on the cubic-tetragonal transformation in zirconia, In Key Engineering Materials,153 (1998) 75-96.
  • [10] Czeppe T., Ziȩba P., Pawłowski A, Crystallographic and microchemical characterization of the early stages of eutectoid decomposition in MgO-partially stabilized ZrO2, Journal of the European Ceramic Society, 22(8) (2002) 1389-1394.
  • [11] Aguilar D.H., Torres-Gonzalez L.C., Torres-Martinez L.M., Lope T., Quintana P., A study of the crystallization of ZrO2 in the sol–gel system: ZrO2–SiO2, Journal of Solid State Chemistry, 158(2) (2001) 349-357.
  • [12] Vasanthavel S., Nandha Kumar P., Kannan S., Quantitative analysis on the influence of SiO 2 content on the phase behavior of ZrO 2, Journal of the American Ceramic Society, 97(2) (2014) 635-642.
  • [13] Vasanthavel S., Derby B., Kannan S., Tetragonal to cubic transformation of SiO2-stabilized ZrO2 polymorph through dysprosium substitutions, Inorganic Chemistry, 56(3) (2017) 1273-1281.
  • [14] Lin C.L., Gan D., Shen P., Stabilization of zirconia sintered with titanium, Journal of the American Ceramic Society, 71(8) (1988) 624-629.
  • [15] Bukhari S.B., Imran M., Bashir M., Riaz S., Naseem S., Room temperature stabilized TiO2 doped ZrO2 thin films for teeth coatings–A sol-gel approach, Journal of Alloys and Compounds, 767 (2018) 1238-1252.
  • [16] Annenkov Y.M., Aparov N.N., Frangul’yan T.S., Voznya A.V., Gornostaev A.M., Effect of a stabilizing y 2 O 3 additive on the strength properties of zirconia ceramics sintered from plasma chemical powders, Glass and ceramics, 54(11-12) (1997) 401-403.
  • [17] Yoshimura M., Oh S.T., Sando M., Niihara K., Crystallization and microstructural characterization of ZrO2 (3 mol% Y2O3) nano-sized powders with various Al2O3 contents, Journal of Alloys and Compounds, 290(1-2) (1999), 284-289.
  • [18] Moon J., Choi H., Kim H., Lee C., The effects of heat treatment on the phase transformation behavior of plasma-sprayed stabilized ZrO2 coatings, Surface and Coatings Technology, 155(1) (2002) 1-10.
  • [19] Zhang Y.L., Jin X. J., Rong Y.H., Hsu T.Y., Jiang D.Y., Shi J.L., On the t→ m martensitic transformation in Ce–Y-TZP ceramics, Acta Materialia, 54(5) (2006) 1289-1295.
  • [20] Cutler R.A., Reynolds J.R., Jones A., Sintering and characterization of polycrystalline monoclinic, tetragonal, and cubic zirconia, Journal of the American Ceramic Society, 75(8) (1992) 2173-2183.
  • [21] Govila R.K., Strength characterization of yttria-partially stabilized zirconia, Journal Of Materials Science, 30(10) (1995) 2656-2667.
  • [22] Liu P.F., Li Z., Xiao P., Luo H., Jiang T.H., Microstructure and mechanical properties of in-situ grown mullite toughened 3Y-TZP zirconia ceramics fabricated by gelcasting, Ceramics International, 44(2) (2018) 1394-1403.
  • [23] Duszová A., Dusza J., Tomášek K., Blugan G., Kuebler, J., Microstructure and properties of carbon nanotube/zirconia composite, Journal of the European Ceramic Society, 28(5) (2008) 1023-1027.
  • [24] Eichler J., Rödel J., Eisele U., Hoffman M., Effect of grain size on mechanical properties of submicrometer 3Y‐TZP: fracture strength and hydrothermal degradation, Journal of the American Ceramic Society, 90(9) (2007) 2830-2836.
  • [25] Sun J., Gao L., Iwasa M., Nakayama T., Niihara K., Failure investigation of carbon nanotube/3Y-TZP nanocomposites, Ceramics International, 31(8) (2005) 1131-1134.
  • [26] Şenel M.C., Fabrication of aluminum matrix hybrid composites reinforced with graphene-ceramic particles by powder metallurgy method and investigation of their mechanical and microstructural properties, PhD thesis, Ondokuz Mayıs University, Graduate School of Natural and Applied Sciences, 2018.
  • [27] Kucuk I., Boyraz T., Structural and mechanical characterization of mullite and aluminium titanate reinforced yttria stabilized zirconia ceramic composites, Journal of Ceramic Processing Research, 20(1) (2019) 73-79.
  • [28] Kumar P., Nath M., Ghosh A., Tripathi H.S., Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide, Materials Characterization, 101 (2015) 34-39.
  • [29] Denry I., Kelly J.R., State of the art of zirconia for dental applications, Dental materials, 24(3) (2008) 299-307.
  • [30] Akkus A., Boyraz T., Investigation of wear properties of CaO, MgO added stabilized zirconia ceramics produced by different pressing methods, J. Ceram. Process Res., 19(3) (2018) 249-52.
  • [31] Huang Y.Q., Li Z., Liu P.F., Huan T.X., Li Y., Xiao P., Tribological properties of Mullite/3Y-TZP ceramics with different content of mullite fabricated by gel-casting, Applied Surface Science, 476 (2019) 232-241.
  • [32] Boyraz T., An investigation on physical and electrical properties of CaO/MgO-stabilized zirconia ceramics formed with different methods, PhD thesis, Istanbul Technical University, Graduate School of Natural and Applied Sciences, 2008.
  • [33] Boyraz T., Thermal Properties and Microstructural Characterization of Aluminium Titanate (Al2TiO5)/La2O3-Stabilized Zirconia (ZrO2) Ceramics, Cumhuriyet Science Journal, 39(1) (2018) 243-249.
  • [34] Çitak E., Boyraz T., Microstructural characterization and thermal properties of aluminium titanate/YSZ Ceramics, Acta Physica Polonica A, 125(2) (2014) 465-468.
  • [35] Boyraz T., Akkuş A., Investigation of wear properties of mullite and aluminium titanate added porcelain ceramics, Journal of Ceramic Processing Research, 22(2) (2021) 226-231.
  • [36] Hafızoğlu M.A., Boyraz T., Akkuş A., Fabrication, characterization and wear properties of mullite reinforced silica-doped zirconia ceramic composites, 4. Internatinonal Conference on Materials Science, Mechanical and Automotive Engineerings and Technology (IMSMATEC’21), Nevşehir, 2021, 175-180.
  • [37] Hafızoğlu M.A., Akkuş A., Boyraz T., Fabrication, characterization and wear properties of mullite reinforced Al2O3-doped ZrO2 ceramic composites, Global Conference on Engineering Research (GLOBCER’21), Bandırma (Balıkesir), 2021, 673-686.
There are 37 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Natural Sciences
Authors

Mehmet Akif Hafızoğlu 0000-0002-9689-3004

Tahsin Boyraz 0000-0003-4404-6388

Ahmet Akkuş 0000-0002-6881-9333

Project Number M-767
Publication Date June 29, 2022
Submission Date October 29, 2021
Acceptance Date April 18, 2022
Published in Issue Year 2022Volume: 43 Issue: 2

Cite

APA Hafızoğlu, M. A., Boyraz, T., & Akkuş, A. (2022). The Effect of Mullite Addition on Wear Properties of SiO2 Doped ZrO2 Ceramics. Cumhuriyet Science Journal, 43(2), 257-265. https://doi.org/10.17776/csj.1015872