Research Article
BibTex RIS Cite
Year 2021, Volume: 42 Issue: 4, 852 - 861, 29.12.2021

Abstract

Project Number

OKÜBAP-2020-PT2-004

References

  • [1] Höök M., Tang X., Depletion of fossil fuels and anthropogenic climate change—A review, Energ Policy, 52(1) (2013) 797-809.
  • [2] Luo M., Yi Y., Wang S., Wang Z., Du M., Pan J., Wang Q., Review of hydrogen production using chemical-looping technology, Renewable and Sustainable Energy Reviews, 81(2) (2018) 3186-214.
  • [3] Wang Y., Yang X., Wang Y., Catalytic performance of mesoporous MgO supported Ni catalyst in steam reforming of model compounds of biomass fermentation for hydrogen production, International Journal of Hydrogen Energy, 41(40) (2016) 17846-57.
  • [4] Gong M., Wang D-Y., Chen C-C., Hwang B-J., Dai H., A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction, Nano Research, 9(1) (2016) 28-46.
  • [5] Zhang F., Zhao P., Niu M., Maddy J., The survey of key technologies in hydrogen energy storage, International Journal of Hydrogen Energy, 41(33) (2016) 14535-14552.
  • [6] Dincer I., Acar C., Review and evaluation of hydrogen production methods for better sustainability, International Journal of Hydrogen Energy, 40(34) (2015) 11094-11111.
  • [7] Muradov N., Veziroǧlu T., From hydrocarbon to hydrogen–carbon to hydrogen economy, International journal of hydrogen energy, 30(3) (2005) 225-237.
  • [8] Arregi A., Amutio M., Lopez G., Bilbao J., Olazar M., Evaluation of thermochemical routes for hydrogen production from biomass: A review, Energy Conversion and Management, 165(1) (2018) 696-719.
  • [9] Holladay JD., Hu J., King DL., Wang Y., An overview of hydrogen production technologies, Catalysis Today, 139(4) (2009) 244-60.
  • [10] Levin DB., Chahine R., Challenges for renewable hydrogen production from biomass, International Journal of Hydrogen Energy, 35(10) (2010) 4962-4969.
  • [11] Bowen CT., Davis HJ., Henshaw BF., Lachance R., LeRoy RL., Renaud R., Developments in advanced alkaline water electrolysis, International Journal of Hydrogen Energy, 9(1) (1984) 59-66.
  • [12] Pu Z., Amiinu IS., Cheng R., Wang P., Zhang C., Mu S., Zhao W., Su F., Zhang G., Liao S., Sun S., Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives, Nano-Micro Letters, 12(1) (2020) 21.
  • [13] Danilovic N., Subbaraman R., Strmcnik D., Stamenkovic V., Markovic N., Electrocatalysis of the HER in acid and alkaline media, Journal of the Serbian Chemical Society, 78(12) (2013) 2007-2015.
  • [14] Choquette Y., Brossard L., Lasia A., Menard H., Study of the Kinetics of Hydrogen Evolution Reaction on Raney Nickel Composite‐Coated Electrode by AC Impedance Technique, Journal of The Electrochemical Society, 137(6) (1990) 1723-1730.
  • [15] Goranova D., Lefterova E., Rashkov R., Electrocatalytic activity of Ni-Mo-Cu and Ni-Co-Cu alloys for hydrogen evolution reaction in alkaline medium, International Journal of Hydrogen Energy, 42(48) (2017) 28777-28785.
  • [16] Farsak M., Kardaş G., Effect of current change on iron-copper-nickel coating on nickel foam for hydrogen production, International Journal of Hydrogen Energy, 44(27) (2019) 14151-14156.
  • [17] Solmaz R., Kardaş G., Fabrication and characterization of NiCoZn–M (M: Ag, Pd and Pt) electrocatalysts as cathode materials for electrochemical hydrogen production, International Journal of Hydrogen Energy, 36(19) (2011) 12079-12087.
  • [18] Farsak M., Aydın Ö., The snowflake‐like structured CoO‐Cu2O@ Fe/Ru catalyst for hydrogen fuel production, International Journal of Energy Research, 45(5) 2020 7561-7571.
  • [19] Hüner B., Farsak M., Telli E., A new catalyst of AlCu@ZnO for hydrogen evolution reaction, International Journal of Hydrogen Energy, 43(15) (2018) 7381-7387.
  • [20] Mkhondo N., Magadzu T., Surface properties of metal oxides and their role on electrochemical hydrogen storage of carbon nanotubes, Digest journal of nanomaterials and biostructures, 13(4) (2018) 921-929.
  • [21] Rios E., Poillerat G., Koenig JF., Gautier JL., Chartier P., Preparation and characterization of thin Co3O4 and MnCo2O4 films prepared on glass/SnO2:F by spray pyrolysis at 150 °C for the oxygen electrode, Thin Solid Films, 264(1) (1995) 18-24.
  • [22] Wang K., Xia M., Xiao T., Lei T., Yan W., Metallurgically prepared NiCu alloys as cathode materials for hydrogen evolution reaction, Mater Chem Phys., 186 (2017) 61-66.
  • [23] Solmaz R., Döner A., Kardaş G., Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction, Electrochemistry Communications, 10(12) (2008) 1909-1911.
  • [24] Telli E., Farsak M., Kardaş G., Investigation of noble metal loading CoWZn electrode for HER, International Journal of Hydrogen Energy, 42(36) (2017) 23260-23267.
  • [25] Tezcan F., Mahmood A., Kardaş G., Optimizing copper oxide layer on zinc oxide via two-step electrodeposition for better photocatalytic performance in photoelectrochemical cells, Applied Surface Science, 479 (2019) 1110-1117.
  • [26] Su D., Kim H-S., Kim W-S., Wang G., Mesoporous Nickel Oxide Nanowires: Hydrothermal Synthesis, Characterisation and Applications for Lithium-Ion Batteries and Supercapacitors with Superior Performance, Chemistry – A European Journal, 18(26) (2012) 8224-8229.
  • [27] Streckova M., Mudra E., Orinakova R., Markusova-Buckova L., Sebek M., Kovalcikova A., Sopcak T., Girman V., Dankova Z., Micusik M., Dusza J., Nickel and nickel phosphide nanoparticles embedded in electrospun carbon fibers as favourable electrocatalysts for hydrogen evolution, Chem Eng J., 303 (2016) 167-181.
  • [28] Wen T-C., Kang H-M., Co–Ni–Cu ternary spinel oxide-coated electrodes for oxygen evolution in alkaline solution, Electrochimica Acta, 43(12) (1998) 1729-1745.
  • [29] Wang C., Li W., Lu X., Xie S., Xiao F., Liu P., Tong Y., Facile synthesis of porous 3D CoNiCu nano-network structure and their activity towards hydrogen evolution reaction, International Journal of Hydrogen Energy, 37(24) (2012) 18688-18693.
  • [30] Tsoncheva T., Tsyntsarski B., Ivanova R., Spassova I., Kovacheva D., Issa G., Paneva D., Karashanova D., Dimitrov M., Georgieva B., Velinov N., Mitov I., Petrov N., NixZn1-xFe2O4 modified activated carbons from industrial waste as catalysts for hydrogen production, Microporous and Mesoporous Materials, 285 (2019) 96-104.
  • [31] Tasic GS., Maslovara SP., Zugic DL., Maksic AD., Marceta Kaninski MP., Characterization of the Ni–Mo catalyst formed in situ during hydrogen generation from alkaline water electrolysis, International Journal of Hydrogen Energy, 36 (18) (2011) 11588-11595.
  • [32] Stoney GG., The tension of metallic films deposited by electrolysis, Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 82(553) (1909) 172-175.
  • [33] Rosalbino F., Delsante S., Borzone G., Angelini E., Electrocatalytic behaviour of Co–Ni–R (R=Rare earth metal) crystalline alloys as electrode materials for hydrogen evolution reaction in alkaline medium, International Journal of Hydrogen Energy, 33(22) (2008) 6696-6703.
  • [34] Nivetha R., Chella S., Kollu P., Jeong SK., Bhatnagar A., Andrews NG., Cobalt and nickel ferrites based graphene nanocomposites for electrochemical hydrogen evolution, Journal of Magnetism and Magnetic Materials, 448 (2018) 165-171.
  • [35] Hamdani M., Pereira MIS., Douch J., Ait Addi A., Berghoute Y., Mendonça MH., Physicochemical and electrocatalytic properties of Li-Co3O 4 anodes prepared by chemical spray pyrolysis for application in alkaline water electrolysis, Electrochimica Acta, 49(9-10) (2004) 1555-1563.
  • [36] Lačnjevac UČ., Jović BM., Jović VD., Radmilović VR., Krstajić NV., Kinetics of the hydrogen evolution reaction on Ni-(Ebonex-supported Ru) composite coatings in alkaline solution. International Journal of Hydrogen Energy, 38(25) (2013) 10178-10190.
  • [37] Lin H-K., Wang C-B., Chiu H-C., Chien S-H., In situ FTIR Study of Cobalt Oxides for the Oxidation of Carbon Monoxide, Catalysis Letters, 86(1) (2003) 63-68.

Investigation of the catalytic effect of metal-metal oxide structure in the catalysts used in hydrogen production by electrolysis of water

Year 2021, Volume: 42 Issue: 4, 852 - 861, 29.12.2021

Abstract

Hydrogen, which is obtained by water splitting using the electrolysis method, is one of the cleanest and most environmentally friendly energy carriers. However, since this production method is expensive, it is not preferred in industrial hydrogen production. Researchers working on this subject have intensified their studies to reduce costs. One of the most important factors determining the cost is the development of effective and inexpensive cathode and anode materials. In this study, the catalysts obtained by electrochemical deposition of nickel on the graphite rod, cobalt oxide using the drag effect and electrochemical platinum deposition on it, were used as the cathode material. The surface characterizations of the obtained catalysts were carried out using SEM and XRD techniques. The electrochemical properties of the catalysts were analyzed using electrochemical impedance spectroscopy, linear sweep voltammetry and potentiodynamic polarization methods. It was determined that the most effective nickel deposition time is 10 seconds, CoO content is 1.9 mg and platinum deposition time is 45 seconds. The initial potential for the hydrogen evolution reaction of the catalyst which has the highest catalytic efficiency was 75 mV and current density was determined as 500 mA cm-2 at the cathodic 0.5 VSHE overvoltage. 

Supporting Institution

Osmaniye Korkut Ata University

Project Number

OKÜBAP-2020-PT2-004

Thanks

The author would like to especially thanks Osmaniye Korkut Ata University for the scientific project department (OKÜBAP-2020-PT2-004), OKUMERLAB, and Assoc. Prof. Dr. Murat FARSAK.

References

  • [1] Höök M., Tang X., Depletion of fossil fuels and anthropogenic climate change—A review, Energ Policy, 52(1) (2013) 797-809.
  • [2] Luo M., Yi Y., Wang S., Wang Z., Du M., Pan J., Wang Q., Review of hydrogen production using chemical-looping technology, Renewable and Sustainable Energy Reviews, 81(2) (2018) 3186-214.
  • [3] Wang Y., Yang X., Wang Y., Catalytic performance of mesoporous MgO supported Ni catalyst in steam reforming of model compounds of biomass fermentation for hydrogen production, International Journal of Hydrogen Energy, 41(40) (2016) 17846-57.
  • [4] Gong M., Wang D-Y., Chen C-C., Hwang B-J., Dai H., A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction, Nano Research, 9(1) (2016) 28-46.
  • [5] Zhang F., Zhao P., Niu M., Maddy J., The survey of key technologies in hydrogen energy storage, International Journal of Hydrogen Energy, 41(33) (2016) 14535-14552.
  • [6] Dincer I., Acar C., Review and evaluation of hydrogen production methods for better sustainability, International Journal of Hydrogen Energy, 40(34) (2015) 11094-11111.
  • [7] Muradov N., Veziroǧlu T., From hydrocarbon to hydrogen–carbon to hydrogen economy, International journal of hydrogen energy, 30(3) (2005) 225-237.
  • [8] Arregi A., Amutio M., Lopez G., Bilbao J., Olazar M., Evaluation of thermochemical routes for hydrogen production from biomass: A review, Energy Conversion and Management, 165(1) (2018) 696-719.
  • [9] Holladay JD., Hu J., King DL., Wang Y., An overview of hydrogen production technologies, Catalysis Today, 139(4) (2009) 244-60.
  • [10] Levin DB., Chahine R., Challenges for renewable hydrogen production from biomass, International Journal of Hydrogen Energy, 35(10) (2010) 4962-4969.
  • [11] Bowen CT., Davis HJ., Henshaw BF., Lachance R., LeRoy RL., Renaud R., Developments in advanced alkaline water electrolysis, International Journal of Hydrogen Energy, 9(1) (1984) 59-66.
  • [12] Pu Z., Amiinu IS., Cheng R., Wang P., Zhang C., Mu S., Zhao W., Su F., Zhang G., Liao S., Sun S., Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives, Nano-Micro Letters, 12(1) (2020) 21.
  • [13] Danilovic N., Subbaraman R., Strmcnik D., Stamenkovic V., Markovic N., Electrocatalysis of the HER in acid and alkaline media, Journal of the Serbian Chemical Society, 78(12) (2013) 2007-2015.
  • [14] Choquette Y., Brossard L., Lasia A., Menard H., Study of the Kinetics of Hydrogen Evolution Reaction on Raney Nickel Composite‐Coated Electrode by AC Impedance Technique, Journal of The Electrochemical Society, 137(6) (1990) 1723-1730.
  • [15] Goranova D., Lefterova E., Rashkov R., Electrocatalytic activity of Ni-Mo-Cu and Ni-Co-Cu alloys for hydrogen evolution reaction in alkaline medium, International Journal of Hydrogen Energy, 42(48) (2017) 28777-28785.
  • [16] Farsak M., Kardaş G., Effect of current change on iron-copper-nickel coating on nickel foam for hydrogen production, International Journal of Hydrogen Energy, 44(27) (2019) 14151-14156.
  • [17] Solmaz R., Kardaş G., Fabrication and characterization of NiCoZn–M (M: Ag, Pd and Pt) electrocatalysts as cathode materials for electrochemical hydrogen production, International Journal of Hydrogen Energy, 36(19) (2011) 12079-12087.
  • [18] Farsak M., Aydın Ö., The snowflake‐like structured CoO‐Cu2O@ Fe/Ru catalyst for hydrogen fuel production, International Journal of Energy Research, 45(5) 2020 7561-7571.
  • [19] Hüner B., Farsak M., Telli E., A new catalyst of AlCu@ZnO for hydrogen evolution reaction, International Journal of Hydrogen Energy, 43(15) (2018) 7381-7387.
  • [20] Mkhondo N., Magadzu T., Surface properties of metal oxides and their role on electrochemical hydrogen storage of carbon nanotubes, Digest journal of nanomaterials and biostructures, 13(4) (2018) 921-929.
  • [21] Rios E., Poillerat G., Koenig JF., Gautier JL., Chartier P., Preparation and characterization of thin Co3O4 and MnCo2O4 films prepared on glass/SnO2:F by spray pyrolysis at 150 °C for the oxygen electrode, Thin Solid Films, 264(1) (1995) 18-24.
  • [22] Wang K., Xia M., Xiao T., Lei T., Yan W., Metallurgically prepared NiCu alloys as cathode materials for hydrogen evolution reaction, Mater Chem Phys., 186 (2017) 61-66.
  • [23] Solmaz R., Döner A., Kardaş G., Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction, Electrochemistry Communications, 10(12) (2008) 1909-1911.
  • [24] Telli E., Farsak M., Kardaş G., Investigation of noble metal loading CoWZn electrode for HER, International Journal of Hydrogen Energy, 42(36) (2017) 23260-23267.
  • [25] Tezcan F., Mahmood A., Kardaş G., Optimizing copper oxide layer on zinc oxide via two-step electrodeposition for better photocatalytic performance in photoelectrochemical cells, Applied Surface Science, 479 (2019) 1110-1117.
  • [26] Su D., Kim H-S., Kim W-S., Wang G., Mesoporous Nickel Oxide Nanowires: Hydrothermal Synthesis, Characterisation and Applications for Lithium-Ion Batteries and Supercapacitors with Superior Performance, Chemistry – A European Journal, 18(26) (2012) 8224-8229.
  • [27] Streckova M., Mudra E., Orinakova R., Markusova-Buckova L., Sebek M., Kovalcikova A., Sopcak T., Girman V., Dankova Z., Micusik M., Dusza J., Nickel and nickel phosphide nanoparticles embedded in electrospun carbon fibers as favourable electrocatalysts for hydrogen evolution, Chem Eng J., 303 (2016) 167-181.
  • [28] Wen T-C., Kang H-M., Co–Ni–Cu ternary spinel oxide-coated electrodes for oxygen evolution in alkaline solution, Electrochimica Acta, 43(12) (1998) 1729-1745.
  • [29] Wang C., Li W., Lu X., Xie S., Xiao F., Liu P., Tong Y., Facile synthesis of porous 3D CoNiCu nano-network structure and their activity towards hydrogen evolution reaction, International Journal of Hydrogen Energy, 37(24) (2012) 18688-18693.
  • [30] Tsoncheva T., Tsyntsarski B., Ivanova R., Spassova I., Kovacheva D., Issa G., Paneva D., Karashanova D., Dimitrov M., Georgieva B., Velinov N., Mitov I., Petrov N., NixZn1-xFe2O4 modified activated carbons from industrial waste as catalysts for hydrogen production, Microporous and Mesoporous Materials, 285 (2019) 96-104.
  • [31] Tasic GS., Maslovara SP., Zugic DL., Maksic AD., Marceta Kaninski MP., Characterization of the Ni–Mo catalyst formed in situ during hydrogen generation from alkaline water electrolysis, International Journal of Hydrogen Energy, 36 (18) (2011) 11588-11595.
  • [32] Stoney GG., The tension of metallic films deposited by electrolysis, Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 82(553) (1909) 172-175.
  • [33] Rosalbino F., Delsante S., Borzone G., Angelini E., Electrocatalytic behaviour of Co–Ni–R (R=Rare earth metal) crystalline alloys as electrode materials for hydrogen evolution reaction in alkaline medium, International Journal of Hydrogen Energy, 33(22) (2008) 6696-6703.
  • [34] Nivetha R., Chella S., Kollu P., Jeong SK., Bhatnagar A., Andrews NG., Cobalt and nickel ferrites based graphene nanocomposites for electrochemical hydrogen evolution, Journal of Magnetism and Magnetic Materials, 448 (2018) 165-171.
  • [35] Hamdani M., Pereira MIS., Douch J., Ait Addi A., Berghoute Y., Mendonça MH., Physicochemical and electrocatalytic properties of Li-Co3O 4 anodes prepared by chemical spray pyrolysis for application in alkaline water electrolysis, Electrochimica Acta, 49(9-10) (2004) 1555-1563.
  • [36] Lačnjevac UČ., Jović BM., Jović VD., Radmilović VR., Krstajić NV., Kinetics of the hydrogen evolution reaction on Ni-(Ebonex-supported Ru) composite coatings in alkaline solution. International Journal of Hydrogen Energy, 38(25) (2013) 10178-10190.
  • [37] Lin H-K., Wang C-B., Chiu H-C., Chien S-H., In situ FTIR Study of Cobalt Oxides for the Oxidation of Carbon Monoxide, Catalysis Letters, 86(1) (2003) 63-68.
There are 37 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Natural Sciences
Authors

Özkan Aydın 0000-0001-8273-4304

Project Number OKÜBAP-2020-PT2-004
Publication Date December 29, 2021
Submission Date June 24, 2021
Acceptance Date November 2, 2021
Published in Issue Year 2021Volume: 42 Issue: 4

Cite

APA Aydın, Ö. (2021). Investigation of the catalytic effect of metal-metal oxide structure in the catalysts used in hydrogen production by electrolysis of water. Cumhuriyet Science Journal, 42(4), 852-861.