Research Article
BibTex RIS Cite
Year 2021, Volume: 42 Issue: 4, 843 - 851, 29.12.2021

Abstract

References

  • [1] Yemiş F., Yenil N., Metilen mavisi ve alizarin’in lüminesans spektrometresi ile asitlik sabitlerinin tayini ve bazı metal duyarlılıklarının incelenmesi, SUJEST, 6(2) (2018) 317-330.
  • [2] Saheed I. O., Adekola F. A., Olatunji G. A., Sorption study of methylene blue on activated carbon prepared from jatropha curcas and terminalia catappa seed coats, JOTCSA, 4(1) (2017) 375-394.
  • [3] Yılmaz N., Alagöz O., Nar kabuklarından kimyasal aktivasyon ile hazırlanan aktif karbon üzerinde metilen mavisinin adsorpsiyonu, ECJSE, 6(3) (2019) 817-829.
  • [4] Kaya N., Yıldız Z., Ceylan S., Preparation and characterisation of biochar from hazelnut shell and its adsorption properties for methylene blue dye, Journal of Polytechnic, 21(4) (2018) 765-776.
  • [5] Aldemir A., Kul A. R., Isotherm, kinetic and thermodynamic studies for the adsorption of methylene blue on almond leaf powder, Cumhuriyet Sci. J., 41(3) (2020) 651-658.
  • [6] Dilekoğlu M. F., Harran Ovası tarım arazileri etrafında bulunan urfa taşı’nın metilen mavisi boyar maddesi adsorpsiyonu, Turk J. Agric. Res., 5(1) (2018) 19-30.
  • [7] Coskun R., Savci S., Delibas A., Adsorption properties of activated almond shells for methylene blue, Environ. Sci. Technol., 1(2) (2018) 31-38.
  • [8] Bayar S., Adsorption of methylene blue onto natural clay, GUSTIJ., (2018) 8 (2): 264-272.
  • [9] Erşan M., Güler Ü. A., Doğan H., Sarraj B., Kolemanit destekli nzvı kullanılarak sulu çözeltilerden metilen mavisinin giderimi, NOHU J. Eng. Sci., 9(1) (2020) 114-127.
  • [10] Kaykıoğlu G., Dalmış İ.S., Piroliz uygulanmış çeltik sapları ile sulu çözeltilerden renk giderimi, Doğ. Afet Çev. Derg., 6(1) (2020) 37-48.
  • [11] Namal O.Ö., Kayısı çekirdeği kabukları ile sulu çözeltiden metilen mavisi adsorpsiyonuna partikül boyutunun etkisi, NOHU Journal of Engineering Sciences, 7(2) (2018) 566-571.
  • [12] Wang Y., Peng Q., Akhtar N., Chen X., Huang Y., Microporous carbon material from fish waste for removal of methylene blue from wastewater, Water Sci. Technol., 81(6) (2020) 1180-1190.
  • [13] Basar C. A., Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot, J. Hazard. Mater., B135 (2006) 232–241.
  • [14] Erkurt F. E., Balcı B., Reaktif Black 5 boyar maddesinin aktif karbon üzerine adsorpsiyonunun kinetik ve adsorpsiyon modelleri kullanılarak incelenmesi, Çukurova University Journal of the Faculty of Engineering and Architecture, 30(1) (2015) 257-269.
  • [15] Aldemir A., Kul A. R., Elik H., Isotherm, kinetic and thermodynamic ınvestigation into methylene blue adsorption onto pinecone powder, Int. J. Environ. Sci. Technol., 14(4) (2019) 183-192.
  • [16] Saloğlu D., Mikro kirletici naproksenin atık sulardan spirulina platensis ile modifiye edilmiş kitosan-polivinilalkol biyokompozitleri ile adsorpsiyonu., BEU Journal of Science, 8(2) (2019), 506-520.
  • [17] Okumuş Z.Ç., Doğan T.H., Biyodizeldeki suyun reçine ile uzaklaştırılması: adsorpsiyon izotermi, kinetiği ve termodinamik incelemesi, EJOSAT, 15 (2019) 561-570.
  • [18] Al-Ghouti M. A., Da'ana D. A., Guidelines for the use and interpretation of adsorption isotherm models: a review, J. Hazard. Mater., 393(5) (2020) 122383.
  • [19] Ayawei N., Ebelegi A. N., Wankasi D., Modelling and interpretation of adsorption isotherms, Hindawi Journal of Chemistry, (2017) 11.
  • [20] Foo K.Y., Hameed B.H., Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  • [21] Eder S., Müller K., Azzari P., Arcifa A., Peydayesh M., Nyström L., Mass transfer mechanism and equilibrium modelling of hydroxytyrosol adsorption on olive pit–derived activated carbon, Chem. Eng. J., 404 (2021) 126519.
  • [22] Ceyhan A.A., Baytar O., Metilen mavisinin magnetik NiFe2O4/aktif karbon nanokompoziti ile adsorpsiyonu: kinetik ve izoterm, Selcuk Univ. J. Eng. Sci. Tech., 6(2) (2018) 227-241.
  • [23] Altıntığ E., Soydan Ö.F., Metheylene blue adsorption and preparation silver bound to activated carbon with sol-gel methods, Sakarya University J. Sci., 22(6) (2018) 1812-1819.
  • [24] Küçük İ., Önal Y., Başar C.A., The activated carbon from walnut shell using CO2 and methylene blue removal, DUJE., 12(2) (2021) 297-308.
  • [25] Toprakcı O., Toprakcı A.K., Okkay H., Methylene Blue removal by activated carbon from platanus orientalis leaves, International Journal of Environment and Geoinformatics, 8(3) (2021) 283-289.
  • [26] Teğin Ş.Ö., Şahin Ö., Baytar O., İzgi M.S., Preparation and characterization of activated carbon from almond shell by microwave-assisted using ZnCl2 activator, Int. J. Chem. Technol., 4(2) (2020) 130-137.
  • [27] Kazak Ö., Single-step pyrolysis for producing activated carbon from sucrose and its properties for methylene blue removal in aqueous solution, Environmental Research & Technology, 4(2) (2021) 165-175.
  • [28] Coskun R., Savci S., Delibas A., Adsorption properties of activated almond shells for methylene blue (MB), Environmental Research & Technology, 1(2) (2018) 31-38.
  • [29] Küçük İ., Önal Y., Low cost activated carbon synthesis, characterization and adsorption applications, Naturengs, 1(2) (2020) 32-38.
  • [30] Küçük İ., Önal Y., Başar C.A., The production and characterization of activated carbon using pistachio shell through carbonization and CO2 activation, JOTCSB., 2(1) 2019 35-44.

Methylene blue adsorption capacity and coherent isotherm model of commercial activated carbon

Year 2021, Volume: 42 Issue: 4, 843 - 851, 29.12.2021

Abstract

The use of dyes that pollute the earth and adversely affect the health of human beings is increasing day by day and it is important to remove them from nature. Methylene blue (MB), which is one of the most commonly used dyestuffs that affects natural life negatively, was the subject of this study. In this study, the adsorption mechanism of commercial activated carbon to remove MB was investigated. In the study, activated carbon was added to MB solution taken in different concentrations and the results were applied to ten different adsorption isotherms which are Langmuir, Freundlich, Temkin, Harkins-Jura, Halsey, Dubinin- Radushkevich, Janovich, Redlich-Peterson, Henry's and Hills. Adsorption isotherm graphs were drawn with the obtained results and constant parameters in adsorption isotherm equations were calculated through graphics. The adsorption mechanism was examined according to the correlation coefficients (R2) from the graphs obtained. The highest correlation coefficients were calculated as 0,9993 and 0,9954 from Redlich-Peterson and Langmuir isotherm equations respectively. Adsorption isotherm was coherent Langmuir and maximum adsorption capacity was determined 208,3 mg/g.

References

  • [1] Yemiş F., Yenil N., Metilen mavisi ve alizarin’in lüminesans spektrometresi ile asitlik sabitlerinin tayini ve bazı metal duyarlılıklarının incelenmesi, SUJEST, 6(2) (2018) 317-330.
  • [2] Saheed I. O., Adekola F. A., Olatunji G. A., Sorption study of methylene blue on activated carbon prepared from jatropha curcas and terminalia catappa seed coats, JOTCSA, 4(1) (2017) 375-394.
  • [3] Yılmaz N., Alagöz O., Nar kabuklarından kimyasal aktivasyon ile hazırlanan aktif karbon üzerinde metilen mavisinin adsorpsiyonu, ECJSE, 6(3) (2019) 817-829.
  • [4] Kaya N., Yıldız Z., Ceylan S., Preparation and characterisation of biochar from hazelnut shell and its adsorption properties for methylene blue dye, Journal of Polytechnic, 21(4) (2018) 765-776.
  • [5] Aldemir A., Kul A. R., Isotherm, kinetic and thermodynamic studies for the adsorption of methylene blue on almond leaf powder, Cumhuriyet Sci. J., 41(3) (2020) 651-658.
  • [6] Dilekoğlu M. F., Harran Ovası tarım arazileri etrafında bulunan urfa taşı’nın metilen mavisi boyar maddesi adsorpsiyonu, Turk J. Agric. Res., 5(1) (2018) 19-30.
  • [7] Coskun R., Savci S., Delibas A., Adsorption properties of activated almond shells for methylene blue, Environ. Sci. Technol., 1(2) (2018) 31-38.
  • [8] Bayar S., Adsorption of methylene blue onto natural clay, GUSTIJ., (2018) 8 (2): 264-272.
  • [9] Erşan M., Güler Ü. A., Doğan H., Sarraj B., Kolemanit destekli nzvı kullanılarak sulu çözeltilerden metilen mavisinin giderimi, NOHU J. Eng. Sci., 9(1) (2020) 114-127.
  • [10] Kaykıoğlu G., Dalmış İ.S., Piroliz uygulanmış çeltik sapları ile sulu çözeltilerden renk giderimi, Doğ. Afet Çev. Derg., 6(1) (2020) 37-48.
  • [11] Namal O.Ö., Kayısı çekirdeği kabukları ile sulu çözeltiden metilen mavisi adsorpsiyonuna partikül boyutunun etkisi, NOHU Journal of Engineering Sciences, 7(2) (2018) 566-571.
  • [12] Wang Y., Peng Q., Akhtar N., Chen X., Huang Y., Microporous carbon material from fish waste for removal of methylene blue from wastewater, Water Sci. Technol., 81(6) (2020) 1180-1190.
  • [13] Basar C. A., Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot, J. Hazard. Mater., B135 (2006) 232–241.
  • [14] Erkurt F. E., Balcı B., Reaktif Black 5 boyar maddesinin aktif karbon üzerine adsorpsiyonunun kinetik ve adsorpsiyon modelleri kullanılarak incelenmesi, Çukurova University Journal of the Faculty of Engineering and Architecture, 30(1) (2015) 257-269.
  • [15] Aldemir A., Kul A. R., Elik H., Isotherm, kinetic and thermodynamic ınvestigation into methylene blue adsorption onto pinecone powder, Int. J. Environ. Sci. Technol., 14(4) (2019) 183-192.
  • [16] Saloğlu D., Mikro kirletici naproksenin atık sulardan spirulina platensis ile modifiye edilmiş kitosan-polivinilalkol biyokompozitleri ile adsorpsiyonu., BEU Journal of Science, 8(2) (2019), 506-520.
  • [17] Okumuş Z.Ç., Doğan T.H., Biyodizeldeki suyun reçine ile uzaklaştırılması: adsorpsiyon izotermi, kinetiği ve termodinamik incelemesi, EJOSAT, 15 (2019) 561-570.
  • [18] Al-Ghouti M. A., Da'ana D. A., Guidelines for the use and interpretation of adsorption isotherm models: a review, J. Hazard. Mater., 393(5) (2020) 122383.
  • [19] Ayawei N., Ebelegi A. N., Wankasi D., Modelling and interpretation of adsorption isotherms, Hindawi Journal of Chemistry, (2017) 11.
  • [20] Foo K.Y., Hameed B.H., Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  • [21] Eder S., Müller K., Azzari P., Arcifa A., Peydayesh M., Nyström L., Mass transfer mechanism and equilibrium modelling of hydroxytyrosol adsorption on olive pit–derived activated carbon, Chem. Eng. J., 404 (2021) 126519.
  • [22] Ceyhan A.A., Baytar O., Metilen mavisinin magnetik NiFe2O4/aktif karbon nanokompoziti ile adsorpsiyonu: kinetik ve izoterm, Selcuk Univ. J. Eng. Sci. Tech., 6(2) (2018) 227-241.
  • [23] Altıntığ E., Soydan Ö.F., Metheylene blue adsorption and preparation silver bound to activated carbon with sol-gel methods, Sakarya University J. Sci., 22(6) (2018) 1812-1819.
  • [24] Küçük İ., Önal Y., Başar C.A., The activated carbon from walnut shell using CO2 and methylene blue removal, DUJE., 12(2) (2021) 297-308.
  • [25] Toprakcı O., Toprakcı A.K., Okkay H., Methylene Blue removal by activated carbon from platanus orientalis leaves, International Journal of Environment and Geoinformatics, 8(3) (2021) 283-289.
  • [26] Teğin Ş.Ö., Şahin Ö., Baytar O., İzgi M.S., Preparation and characterization of activated carbon from almond shell by microwave-assisted using ZnCl2 activator, Int. J. Chem. Technol., 4(2) (2020) 130-137.
  • [27] Kazak Ö., Single-step pyrolysis for producing activated carbon from sucrose and its properties for methylene blue removal in aqueous solution, Environmental Research & Technology, 4(2) (2021) 165-175.
  • [28] Coskun R., Savci S., Delibas A., Adsorption properties of activated almond shells for methylene blue (MB), Environmental Research & Technology, 1(2) (2018) 31-38.
  • [29] Küçük İ., Önal Y., Low cost activated carbon synthesis, characterization and adsorption applications, Naturengs, 1(2) (2020) 32-38.
  • [30] Küçük İ., Önal Y., Başar C.A., The production and characterization of activated carbon using pistachio shell through carbonization and CO2 activation, JOTCSB., 2(1) 2019 35-44.
There are 30 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Natural Sciences
Authors

İlhan Küçük 0000-0003-2876-3942

Publication Date December 29, 2021
Submission Date January 15, 2021
Acceptance Date October 18, 2021
Published in Issue Year 2021Volume: 42 Issue: 4

Cite

APA Küçük, İ. (2021). Methylene blue adsorption capacity and coherent isotherm model of commercial activated carbon. Cumhuriyet Science Journal, 42(4), 843-851.