Inverse Nodal Problems for Dirac-Type Integro-Differential System with Boundary Conditions Polynomially Dependent on the Spectral Parameter
Year 2019,
Volume: 40 Issue: 4, 875 - 885, 31.12.2019
Baki Keskin
,
Hediye Dilara Tel
Abstract
In this work, we study the inverse nodal problem
for Dirac type integro-differential operator with the boundary conditions
dependent spectral parameter polynomially. We prove that dense subset of the
nodal points determines the coefficients of differential part of operator and
gives partial information for integral part of it.
Supporting Institution
CUBAP
References
- [1] J.R. McLaughlin, Inverse spectral theory using nodal points as data a uniqueness result, J. Diff. Eq. 73 (1988) 354-362.
- [2] O.H. Hald, J.R. McLaughlin, Solutions of inverse nodal problems, Inv. Prob. 5 (1989) 307-347.
- [3] X-F Yang, A solution of the nodal problem, Inverse Problems, 13 (1997) 203-213.
- [4] P.J. Browne, B.D. Sleeman, Inverse nodal problem for Sturm-Liouville equation with eigenparameter depend boundary conditions, Inverse Problems 12 (1996) 377-381.
- [5] S.A. Buterin, C.T. Shieh, Inverse nodal problem for differential pencils, Appl. Math. Lett. 22, (2009) 1240-1247.
- [6] S.A. Buterin, C.T. Shieh, Incomplete inverse spectral and nodal problems for differential pencil. Results Math. 62 (2012) 167-179.
- [7] Y.H. Cheng, C-K. Law and J. Tsay, Remarks on a new inverse nodal problem, J. Math. Anal. Appl. 248 (2000) 145-155.
- [8] C.K. Law, C.L. Shen and C.F. Yang, The Inverse Nodal Problem on the Smoothness of the Potential Function, Inverse Problems, 15-1 (1999) 253-263 (Erratum, Inverse Problems, 17 (2001) 361-363.
- [9] A.S. Ozkan, B. Keskin, Inverse Nodal Problems for Sturm-Liouville Equation with EigenparameterDependent Boundary and Jump Conditions, Inverse Problems in Science and Engineering, 23-8 (2015) 1306-1312.
- [10] C-T Shieh, V.A. Yurko, Inverse nodal and inverse spectral problems for discontinuous boundary value problems, J. Math. Anal. Appl. 347 (2008) 266-272.
- [11] C-F Yang, Xiao-Ping Yang, Inverse nodal problems for the Sturm-Liouville equation with polynomially dependent on the eigenparameter, Inverse Problems in Science and Engineering, 19-7 (2011) 951-961.
- [12] C-F Yang, Inverse nodal problems of discontinuous Sturm-Liouville operator, J. Differential Equations, 254 (2013) 1992-2014.
- [13] C-F Yang, Z-Y.Huang, Reconstruction of the Dirac operator from nodal data. Integr. Equ. Oper. Theory 66 (2010) 539-551.
- [14] C-F Yang, V.N. Pivovarchik, : Inverse nodal problem for Dirac system with spectral parameter in boundary conditions. Complex Anal. Oper. Theory 7 (2013) 1211-1230.
- [15] Y. Guo, Y. Wei, Inverse Nodal Problem for Dirac Equations with Boundary Conditions Polynomially Dependent on the Spectral Parameter, Results. Math. 67 (2015) 95--110.
- [16] S.A. Buterin, On an Inverse Spectral Problem for a Convolution Integro-Differential Operator, Results in Mathematics, 50 (2007) 173-181.
- [17] S.A. Buterin, The Inverse Problem of Recovering the Volterra Convolution Operator from the Incomplete Spectrum of its Rank-One Perturbation, Inverse Problems, 22 (2006) 2223--2236.
- [18] G. Freiling, V.A. Yurko, Inverse Sturm--Liouville Problems and their Applications, Nova Science, New York, 2001.
- [19] Y.V. Kuryshova, Inverse Spectral Problem for Integro-Differential Operators, Mathematical Notes, 81-6 (2007) 767-777.
- [20] B.Wu, J. Yu, Uniqueness of an Inverse Problem for an Integro-Differential Equation Related to the Basset Problem, Boundary Value Problems, 229 (2014).
- [21] B. Keskin A. S. Ozkan, Inverse nodal problems for Dirac-type integro-differential operators, J. Differential Equations. 263 (2017) 8838--8847
- [22] B. Keskin, H. D. Tel, Reconstruction of the Dirac-Type Integro-Differential Operator From Nodal Data, Numerical Functional Analysis and Optimization, 39-11 (2018) 1208–1220.
Year 2019,
Volume: 40 Issue: 4, 875 - 885, 31.12.2019
Baki Keskin
,
Hediye Dilara Tel
References
- [1] J.R. McLaughlin, Inverse spectral theory using nodal points as data a uniqueness result, J. Diff. Eq. 73 (1988) 354-362.
- [2] O.H. Hald, J.R. McLaughlin, Solutions of inverse nodal problems, Inv. Prob. 5 (1989) 307-347.
- [3] X-F Yang, A solution of the nodal problem, Inverse Problems, 13 (1997) 203-213.
- [4] P.J. Browne, B.D. Sleeman, Inverse nodal problem for Sturm-Liouville equation with eigenparameter depend boundary conditions, Inverse Problems 12 (1996) 377-381.
- [5] S.A. Buterin, C.T. Shieh, Inverse nodal problem for differential pencils, Appl. Math. Lett. 22, (2009) 1240-1247.
- [6] S.A. Buterin, C.T. Shieh, Incomplete inverse spectral and nodal problems for differential pencil. Results Math. 62 (2012) 167-179.
- [7] Y.H. Cheng, C-K. Law and J. Tsay, Remarks on a new inverse nodal problem, J. Math. Anal. Appl. 248 (2000) 145-155.
- [8] C.K. Law, C.L. Shen and C.F. Yang, The Inverse Nodal Problem on the Smoothness of the Potential Function, Inverse Problems, 15-1 (1999) 253-263 (Erratum, Inverse Problems, 17 (2001) 361-363.
- [9] A.S. Ozkan, B. Keskin, Inverse Nodal Problems for Sturm-Liouville Equation with EigenparameterDependent Boundary and Jump Conditions, Inverse Problems in Science and Engineering, 23-8 (2015) 1306-1312.
- [10] C-T Shieh, V.A. Yurko, Inverse nodal and inverse spectral problems for discontinuous boundary value problems, J. Math. Anal. Appl. 347 (2008) 266-272.
- [11] C-F Yang, Xiao-Ping Yang, Inverse nodal problems for the Sturm-Liouville equation with polynomially dependent on the eigenparameter, Inverse Problems in Science and Engineering, 19-7 (2011) 951-961.
- [12] C-F Yang, Inverse nodal problems of discontinuous Sturm-Liouville operator, J. Differential Equations, 254 (2013) 1992-2014.
- [13] C-F Yang, Z-Y.Huang, Reconstruction of the Dirac operator from nodal data. Integr. Equ. Oper. Theory 66 (2010) 539-551.
- [14] C-F Yang, V.N. Pivovarchik, : Inverse nodal problem for Dirac system with spectral parameter in boundary conditions. Complex Anal. Oper. Theory 7 (2013) 1211-1230.
- [15] Y. Guo, Y. Wei, Inverse Nodal Problem for Dirac Equations with Boundary Conditions Polynomially Dependent on the Spectral Parameter, Results. Math. 67 (2015) 95--110.
- [16] S.A. Buterin, On an Inverse Spectral Problem for a Convolution Integro-Differential Operator, Results in Mathematics, 50 (2007) 173-181.
- [17] S.A. Buterin, The Inverse Problem of Recovering the Volterra Convolution Operator from the Incomplete Spectrum of its Rank-One Perturbation, Inverse Problems, 22 (2006) 2223--2236.
- [18] G. Freiling, V.A. Yurko, Inverse Sturm--Liouville Problems and their Applications, Nova Science, New York, 2001.
- [19] Y.V. Kuryshova, Inverse Spectral Problem for Integro-Differential Operators, Mathematical Notes, 81-6 (2007) 767-777.
- [20] B.Wu, J. Yu, Uniqueness of an Inverse Problem for an Integro-Differential Equation Related to the Basset Problem, Boundary Value Problems, 229 (2014).
- [21] B. Keskin A. S. Ozkan, Inverse nodal problems for Dirac-type integro-differential operators, J. Differential Equations. 263 (2017) 8838--8847
- [22] B. Keskin, H. D. Tel, Reconstruction of the Dirac-Type Integro-Differential Operator From Nodal Data, Numerical Functional Analysis and Optimization, 39-11 (2018) 1208–1220.