Research Article
BibTex RIS Cite

Interference-free determination of carmine in food samples using ultrasonic assisted cloud point extraction coupled with spectrophotometry

Year 2019, Volume: 40 Issue: 2, 305 - 316, 30.06.2019
https://doi.org/10.17776/csj.486753

Abstract

In this study, a simple, green and cost effective method of extraction
and preconcentration of carmine used as a food additive in some food samples
was developed using ultrasonic assisted cloud point extraction (UA-CPE) before
spectrophotometric determination. Carmine was extracted from the aqueous
solution using polyoxyethylenesorbitan monolaurate (Tween 20) as the extraction
solvent in presence of Ni(II) at pH 6.5. Variables such as pH, amount of metal,
temperature, ultrasonic effect, solvent type, type and concentration of
nanionic surfactant have been optimized in detail. Under the optimum conditions,
the analytical characteristics of the method are as follows; linear working
range 1.5-350 μg L
-1; the detection limit, 0.4 μg L-1;
and preconcentration factor, 80. The relative standard deviation (RSD%)
obtained for the 10 μg L
-1 concentration (n: 5) of carmine was 3.7%.
Recovery values for two different concentration levels were in the range of
94.8-104.7%. The accuracy and precision of the method were evaluated by intra-
and inter-day studies. Finally, the method has been successfully applied to the
determination of carmine in various foods.

References

  • [1] Hsiu-Mei C., Ting-Chien C., San-De P., Chiang, H. L., Adsorption characteristics of Orange II and Chrysophenine on sludge adsorbent and activated carbon fibers, Journal of hazardous materials, 161(2-3) (2009) 1384-1390.
  • [2] Dinç E, Baydan E., Kanbur M., Onur, F., Spectrophotometric multicomponent determination of sunset yellow, tartrazine and allura red in soft drink powder by double divisor-ratio spectra derivative, inverse least-squares and principal component regression methods, Talanta, 58(3) (2002) 579-594.
  • [3] Watson D.H., Food chemical safety, volume 2: additives, Woodhead Publishing Limited, Abington Hall, Abington, Cambridge CB1 6AH, UK, (2002).
  • [4] Yilmaz U. T., Ergun F., Yilmaz H., Determination of the food dye carmine in milk and candy products by differential pulse polarography, journal of food and drug analysis, 22(3) (2014) 329-335.
  • [5] Alghamdi A.H., Alshammery H.M., Abdalla M.A., Alghamdi A.F., Determination of carmine food dye (E120) in foodstuffs by stripping voltammetry, Journal of AOAC International, 92(5) (2009) 1454-1459.
  • [6] Silva T.A., Pereira G.F., Fatibello-Filho O., Eguiluz K.I.B., Salazar-Banda G.R., Electroanalytical sensing of indigo carmine dye in water samples using a cathodically pretreated boron-doped diamond electrode, Journal of Electroanalytical Chemistry, 769 (2016) 28-34.
  • [7] Heydari R., Hosseini M., Zarabi S., A simple method for determination of carmine in food samples based on cloud point extraction and spectrophotometric detection, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 150 (2015) 786-791.
  • [8] González M., Méndez J., Carnero A., Lobo M.G., Afonso, A., Optimizing conditions for the extraction of pigments in cochineals (Dactylopius coccus Costa) using response surface methodology, Journal of agricultural and food chemistry, 50(24) (2002) 6968-6974.
  • [9] Yilmaz U.T., Ergun F., Yilmaz, H., Determination of the food dye carmine in milk and candy products by differential pulse polarography, Journal of food and drug analysis, 22(3) (2014) 329-335.
  • [10] Zhang L., Wang H., Cao, J., Determination of carmine, allura red and erythrosine in meat product by high performance liquid chromatography, Journal of Food Safety and Quality, 7(3) (2016) 1006-1010.
  • [11] Qi P., Zeng T., Wen Z., Liang X., Zhang X., Interference-free simultaneous determination of Sudan dyes in chili foods using solid phase extraction coupled with HPLC–DAD, Food Chemistry, 125(4) (2011) 1462-1467.
  • [12] Soylak M., Unsal Y. E., Yilmaz E., Tuzen, M., Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction, Food and chemical toxicology, 49(8) (2011) 1796-1799.
  • [13] Altunay N., Gürkan, R., A new cloud point extraction procedure for determination of inorganic antimony species in beverages and biological samples by flame atomic absorption spectrometry, Food chemistry, 175 (2015) 507-515.
  • [14] Gürkan R., Korkmaz S., Altunay N., Preconcentration and determination of vanadium and molybdenum in milk, vegetables and foodstuffs by ultrasonic-thermostatic-assisted cloud point extraction coupled to flame atomic absorption spectrometry, Talanta, 155 (2016) 38-46.
  • [15] Altunay N., Gürkan R., Orhan U., A new ultrasonic-assisted cloud-point-extraction procedure for pre-concentration and determination of ultra-trace levels of copper in selected beverages and foods by flame atomic absorption spectrometry, Food Additives & Contaminants: Part A, 32(9) (2015) 1475-1487.
  • [16] Elik A., Altunay N., Gürkan R., Determination of trace levels of nitrite in beverages samples through micellar improved catalytic kinetic spectrophotometry, Cumhuriyet Sci. J., 38-3 (2017) 400-411.
  • [17] Zaghdoudi K., Pontvianne S., Framboisier X., Achard M., Kudaibergenova R., Ayadi-Trabelsi M., Guiavarc Y., Accelerated solvent extraction of carotenoids from: Tunisian Kaki (Diospyros kaki L.), peach (Prunus persica L.) and apricot (Prunus armeniaca L.), Food chemistry, 184 (2015) 131-139.
  • [18] Xia X., Zhu C., Luo J., Zeng Z., Guan C., Ng C. F., Fan H. J., Synthesis of Free‐Standing Metal Sulfide Nanoarrays via Anion Exchange Reaction and Their Electrochemical Energy Storage Application. small, 10(4) (2014) 766-773.
  • [19] Hong J. G., Zhang B., Glabman S., Uzal N., Dou X., Zhang H., Chen Y., Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: a review, Journal of Membrane Science, 486 (2015) 71-88.
  • [20] Gürkan R., Altunay N., Quantification of 5-hydroxymethylfurfural in honey samples and acidic beverages using spectrophotometry coupled with ultrasonic-assisted cloud point extraction, Journal of Food Composition and Analysis, 42 (2015) 141-151.
  • [21] Altunay N., Gürkan R., Sertakan K., Indirect determination of free, total, and reversibly bound sulfite in selected beverages by spectrophotometry using ultrasonic-assisted cloud point extraction as a preconcentration step, Food analytical methods, 8(8) (2015) 2094-2106.
  • [22] Pourreza N., Sharifi H., Golmohammadi H., Curcumin nanoparticles combined with cloud point extraction for citrate determination in food and drug samples, Microchemical Journal, 129 (2016) 213-218.
  • [23] Oh J. Y., Choi S. D., Kwon H. O., Lee S. E., Leaching of polycyclic aromatic hydrocarbons (PAHs) from industrial wastewater sludge by ultrasonic treatment, Ultrasonics sonochemistry, 33 (2016) 61-66.
  • [24] Lin S., Zhou X., Ge L., Ng S. H., Zhou X., Chang, V.W.C., Development of an accelerated leaching method for incineration bottom ash correlated to toxicity characteristic leaching protocol, Electrophoresis, 37(19) (2016) 2458-2461.
  • [25] Doche M.L., Mandroyan A., Mourad-Mahmoud M., Moutarlier V., Hihn J.Y., An ultrasonic-assisted process for copper recovery in a des solvent: Leaching and re-deposition, Chemical Engineering and Processing: Process Intensification, 121 (2017) 90-96.
  • [26] Güney M., Elik A. Comparison of probe with bath ultrasonic leaching procedures for preparation to heavy metal analysis of bio-collectors prior to atomic absorption spectrometry, Communications in Soil Science and Plant Analysis, 48(15) (2017) 1741-1752.
  • [27] Kakavandi M.G., Behbahani M., Omidi F., and Hesam G., Application of ultrasonic assisted-dispersive solid phase extraction based on ion-imprinted polymer nanoparticles for preconcentration and trace determination of lead ions in food and water samples, Food Analytical Methods, 10(7) (2017) 2454-2466.
  • [28] Dağdeviren S., Altunay N., Sayman,Y., Gürkan R., A new method of UA_CPE coupled with spectrophotometry for the faster and cost-effective detection of proline in fruit juice, honey, and wine, Food chemistry, 255 (2018) 31-40.
  • [29] Lim H. S., Choi J. C., Song S. B., Kim M., Quantitative determination of carmine in foods by high-performance liquid chromatography, Food chemistry, 158, 521-526.
  • [30] Kunkely H., Vogler A., Absorption and luminescence spectra of cochineal, Inorganic Chemistry Communications, 14(7) (2014) 1153-1155.
  • [31] Wyrzykowski D., Chmurzyński L., Thermodynamics of citrate complexation with Mn2+, Co2+, Ni2+ and Zn2+ ions, Journal of thermal analysis and calorimetry, 102(1) (2009) 61-64.
  • [32] Goscinny S., Hanot V., Halbardier J.F., Michelet J. Y., Van Loco J., Rapid analysis of melamine residue in milk, milk products, bakery goods and flour by ultra-performance liquid chromatography/tandem mass spectrometry: From food crisis to accreditation, Food Control, 22(2) (2011) 226-230.
  • [33] Lim H. S., Choi J. C., Song S. B., Kim M., Quantitative determination of carmine in foods by high-performance liquid chromatography, Food chemistry, 158 (2014) 521-526.
  • [34] Alghamdi A.H., Alshammery H.M., Abdalla M.A., Alghamdi A.F., Determination of carmine food dye (E120) in foodstuffs by stripping voltammetry, Journal of AOAC International, 92(5) (2009) 1454-1459.
  • [35] Yilmaz U.T., Ergun F., Yilmaz H., Determination of the food dye carmine in milk and candy products by differential pulse polarography, Journal of food and drug analysis, 22(3) (2014) 329-335.
  • [36] Heydari R., Hosseini M., Zarabi, S.A., simple method for determination of carmine in food samples based on cloud point extraction and spectrophotometric detection, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 150 (2015) 786-791.

Spektrofotometri ile birleştirilmiş ultrasonik destekli bulutlanma noktası ekstraksiyonu kullanılarak gıda örneklerinde karminin girişimsiz tayini

Year 2019, Volume: 40 Issue: 2, 305 - 316, 30.06.2019
https://doi.org/10.17776/csj.486753

Abstract

Bu çalışmada, bazı gıda örneklerinde, carmine'nin spektrofotometrik
tayin öncesi basit, yeşil ve düşük maliyetli özelliklere sahip ultrasonik
yardımlı bulut noktası ekstraksiyonu (UA-CPE) geliştirilmiştir. Carmine, pH
6.5'de Ni (II) varlığında ekstraksiyon çözücüsü olarak polioksietilensorbitan
monolaurat (Tween 20) kullanılarak sulu çözeltiden özütlenmiştir. pH, metal
miktarı, sıcaklık, ultrasonik etki, solvent tipi, nanyonik yüzey aktif madde
türü ve konsantrasyonu gibi değişkenler en uygun şekilde optimize edilmiştir.
Optimum koşullar altında, yöntemin analitik özellikleri aşağıdaki gibidir;
doğrusal çalışma aralığı 1.5-350 μg L
-1; tespit limiti, 0,4 μg L-1;
ve ön konsantrasyon faktörü, 80. Karminin 10 µg L
-1 konsantrasyonu
(n: 5) için elde edilen bağıl standart sapma (% BSS) % 3.7 idi. İki farklı
konsantrasyon seviyesi için geri kazanım değerleri % 94.8-104.7 arasındaydı.
Yöntemin doğruluğu ve kesinliği, gün içi ve günler arası çalışmalarla
değerlendirildi. Son olarak, yöntem çeşitli gıdalarda karmin tayini için
başarıyla uygulanmıştır.

References

  • [1] Hsiu-Mei C., Ting-Chien C., San-De P., Chiang, H. L., Adsorption characteristics of Orange II and Chrysophenine on sludge adsorbent and activated carbon fibers, Journal of hazardous materials, 161(2-3) (2009) 1384-1390.
  • [2] Dinç E, Baydan E., Kanbur M., Onur, F., Spectrophotometric multicomponent determination of sunset yellow, tartrazine and allura red in soft drink powder by double divisor-ratio spectra derivative, inverse least-squares and principal component regression methods, Talanta, 58(3) (2002) 579-594.
  • [3] Watson D.H., Food chemical safety, volume 2: additives, Woodhead Publishing Limited, Abington Hall, Abington, Cambridge CB1 6AH, UK, (2002).
  • [4] Yilmaz U. T., Ergun F., Yilmaz H., Determination of the food dye carmine in milk and candy products by differential pulse polarography, journal of food and drug analysis, 22(3) (2014) 329-335.
  • [5] Alghamdi A.H., Alshammery H.M., Abdalla M.A., Alghamdi A.F., Determination of carmine food dye (E120) in foodstuffs by stripping voltammetry, Journal of AOAC International, 92(5) (2009) 1454-1459.
  • [6] Silva T.A., Pereira G.F., Fatibello-Filho O., Eguiluz K.I.B., Salazar-Banda G.R., Electroanalytical sensing of indigo carmine dye in water samples using a cathodically pretreated boron-doped diamond electrode, Journal of Electroanalytical Chemistry, 769 (2016) 28-34.
  • [7] Heydari R., Hosseini M., Zarabi S., A simple method for determination of carmine in food samples based on cloud point extraction and spectrophotometric detection, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 150 (2015) 786-791.
  • [8] González M., Méndez J., Carnero A., Lobo M.G., Afonso, A., Optimizing conditions for the extraction of pigments in cochineals (Dactylopius coccus Costa) using response surface methodology, Journal of agricultural and food chemistry, 50(24) (2002) 6968-6974.
  • [9] Yilmaz U.T., Ergun F., Yilmaz, H., Determination of the food dye carmine in milk and candy products by differential pulse polarography, Journal of food and drug analysis, 22(3) (2014) 329-335.
  • [10] Zhang L., Wang H., Cao, J., Determination of carmine, allura red and erythrosine in meat product by high performance liquid chromatography, Journal of Food Safety and Quality, 7(3) (2016) 1006-1010.
  • [11] Qi P., Zeng T., Wen Z., Liang X., Zhang X., Interference-free simultaneous determination of Sudan dyes in chili foods using solid phase extraction coupled with HPLC–DAD, Food Chemistry, 125(4) (2011) 1462-1467.
  • [12] Soylak M., Unsal Y. E., Yilmaz E., Tuzen, M., Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction, Food and chemical toxicology, 49(8) (2011) 1796-1799.
  • [13] Altunay N., Gürkan, R., A new cloud point extraction procedure for determination of inorganic antimony species in beverages and biological samples by flame atomic absorption spectrometry, Food chemistry, 175 (2015) 507-515.
  • [14] Gürkan R., Korkmaz S., Altunay N., Preconcentration and determination of vanadium and molybdenum in milk, vegetables and foodstuffs by ultrasonic-thermostatic-assisted cloud point extraction coupled to flame atomic absorption spectrometry, Talanta, 155 (2016) 38-46.
  • [15] Altunay N., Gürkan R., Orhan U., A new ultrasonic-assisted cloud-point-extraction procedure for pre-concentration and determination of ultra-trace levels of copper in selected beverages and foods by flame atomic absorption spectrometry, Food Additives & Contaminants: Part A, 32(9) (2015) 1475-1487.
  • [16] Elik A., Altunay N., Gürkan R., Determination of trace levels of nitrite in beverages samples through micellar improved catalytic kinetic spectrophotometry, Cumhuriyet Sci. J., 38-3 (2017) 400-411.
  • [17] Zaghdoudi K., Pontvianne S., Framboisier X., Achard M., Kudaibergenova R., Ayadi-Trabelsi M., Guiavarc Y., Accelerated solvent extraction of carotenoids from: Tunisian Kaki (Diospyros kaki L.), peach (Prunus persica L.) and apricot (Prunus armeniaca L.), Food chemistry, 184 (2015) 131-139.
  • [18] Xia X., Zhu C., Luo J., Zeng Z., Guan C., Ng C. F., Fan H. J., Synthesis of Free‐Standing Metal Sulfide Nanoarrays via Anion Exchange Reaction and Their Electrochemical Energy Storage Application. small, 10(4) (2014) 766-773.
  • [19] Hong J. G., Zhang B., Glabman S., Uzal N., Dou X., Zhang H., Chen Y., Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: a review, Journal of Membrane Science, 486 (2015) 71-88.
  • [20] Gürkan R., Altunay N., Quantification of 5-hydroxymethylfurfural in honey samples and acidic beverages using spectrophotometry coupled with ultrasonic-assisted cloud point extraction, Journal of Food Composition and Analysis, 42 (2015) 141-151.
  • [21] Altunay N., Gürkan R., Sertakan K., Indirect determination of free, total, and reversibly bound sulfite in selected beverages by spectrophotometry using ultrasonic-assisted cloud point extraction as a preconcentration step, Food analytical methods, 8(8) (2015) 2094-2106.
  • [22] Pourreza N., Sharifi H., Golmohammadi H., Curcumin nanoparticles combined with cloud point extraction for citrate determination in food and drug samples, Microchemical Journal, 129 (2016) 213-218.
  • [23] Oh J. Y., Choi S. D., Kwon H. O., Lee S. E., Leaching of polycyclic aromatic hydrocarbons (PAHs) from industrial wastewater sludge by ultrasonic treatment, Ultrasonics sonochemistry, 33 (2016) 61-66.
  • [24] Lin S., Zhou X., Ge L., Ng S. H., Zhou X., Chang, V.W.C., Development of an accelerated leaching method for incineration bottom ash correlated to toxicity characteristic leaching protocol, Electrophoresis, 37(19) (2016) 2458-2461.
  • [25] Doche M.L., Mandroyan A., Mourad-Mahmoud M., Moutarlier V., Hihn J.Y., An ultrasonic-assisted process for copper recovery in a des solvent: Leaching and re-deposition, Chemical Engineering and Processing: Process Intensification, 121 (2017) 90-96.
  • [26] Güney M., Elik A. Comparison of probe with bath ultrasonic leaching procedures for preparation to heavy metal analysis of bio-collectors prior to atomic absorption spectrometry, Communications in Soil Science and Plant Analysis, 48(15) (2017) 1741-1752.
  • [27] Kakavandi M.G., Behbahani M., Omidi F., and Hesam G., Application of ultrasonic assisted-dispersive solid phase extraction based on ion-imprinted polymer nanoparticles for preconcentration and trace determination of lead ions in food and water samples, Food Analytical Methods, 10(7) (2017) 2454-2466.
  • [28] Dağdeviren S., Altunay N., Sayman,Y., Gürkan R., A new method of UA_CPE coupled with spectrophotometry for the faster and cost-effective detection of proline in fruit juice, honey, and wine, Food chemistry, 255 (2018) 31-40.
  • [29] Lim H. S., Choi J. C., Song S. B., Kim M., Quantitative determination of carmine in foods by high-performance liquid chromatography, Food chemistry, 158, 521-526.
  • [30] Kunkely H., Vogler A., Absorption and luminescence spectra of cochineal, Inorganic Chemistry Communications, 14(7) (2014) 1153-1155.
  • [31] Wyrzykowski D., Chmurzyński L., Thermodynamics of citrate complexation with Mn2+, Co2+, Ni2+ and Zn2+ ions, Journal of thermal analysis and calorimetry, 102(1) (2009) 61-64.
  • [32] Goscinny S., Hanot V., Halbardier J.F., Michelet J. Y., Van Loco J., Rapid analysis of melamine residue in milk, milk products, bakery goods and flour by ultra-performance liquid chromatography/tandem mass spectrometry: From food crisis to accreditation, Food Control, 22(2) (2011) 226-230.
  • [33] Lim H. S., Choi J. C., Song S. B., Kim M., Quantitative determination of carmine in foods by high-performance liquid chromatography, Food chemistry, 158 (2014) 521-526.
  • [34] Alghamdi A.H., Alshammery H.M., Abdalla M.A., Alghamdi A.F., Determination of carmine food dye (E120) in foodstuffs by stripping voltammetry, Journal of AOAC International, 92(5) (2009) 1454-1459.
  • [35] Yilmaz U.T., Ergun F., Yilmaz H., Determination of the food dye carmine in milk and candy products by differential pulse polarography, Journal of food and drug analysis, 22(3) (2014) 329-335.
  • [36] Heydari R., Hosseini M., Zarabi, S.A., simple method for determination of carmine in food samples based on cloud point extraction and spectrophotometric detection, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 150 (2015) 786-791.
There are 36 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Adil Elik 0000-0002-3942-4711

Publication Date June 30, 2019
Submission Date November 22, 2018
Acceptance Date February 4, 2019
Published in Issue Year 2019Volume: 40 Issue: 2

Cite

APA Elik, A. (2019). Interference-free determination of carmine in food samples using ultrasonic assisted cloud point extraction coupled with spectrophotometry. Cumhuriyet Science Journal, 40(2), 305-316. https://doi.org/10.17776/csj.486753