Harmonik sayıları içeren toplamlar için bazı denklikler
Year 2018,
Volume: 39 Issue: 4, 912 - 919, 24.12.2018
Sibel Koparal
,
Neşe Ömür
Abstract
Bu makalede harmonik sayıları ve ikinci mertebeden lineer dizilerin
terimlerini içeren toplamlar hakkında bazı denklikler gösterilmiştir.
References
- [1] Granville A., The square of the Fermat quotient, Integers: Electronic Journal of Combinatorial Number Theory, 4 (2004) #A22.
- [2] Kılıç E., Ömür N. and Türker Ulutaş Y., Alternating sums of the powers of Fibonacci and Lucas numbers, Miskolc Math. Notes, 12-1 (2011) 87-103.
- [3] Kılıç E., Ömür N. and Türker Ulutaş, Y., Some finite sums involving generalized Fibonacci and Lucas numbers, Discrete Dynamics in Nature and Society, (2011) 1-11, doi:10.1155/2011/284261.
- [4] Koparal S. and Ömür N., On congruences related to central binomial coefficients, harmonic and Lucas numbers, Turkish Journal of Mathematics, 40 (2016) 973-985.
- [5] Melham R.S., Certain classes of finite sums that involve generalized Fibonacci and Lucas numbers, The Fibonacci Quarterly, 42-1 (2004) 47–54.
- [6] Ömür N. and Koparal S., Some congruences related to harmonic numbers and the terms of the second order sequences, Mathematica Moravica, 20 (2016) 23-37.
- [7] Sun Z.W., Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc., 140-2 (2012) 415-428.
- [8] Sun Z.W. and Zhao L.L., Arithmetic theory of harmonic numbers (II), Colloq. Math., 130-1 (2013) 67-78.
- [9] Wolstenholme J., On certain properties of prime numbers, Quart. J. Math., 5 (1862) 35-39.
Some Congruences for Sums Involving Harmonic Numbers
Year 2018,
Volume: 39 Issue: 4, 912 - 919, 24.12.2018
Sibel Koparal
,
Neşe Ömür
Abstract
In this paper, we establish some congruences involving sums with
harmonic numbers and the terms of second-order linear sequences.
References
- [1] Granville A., The square of the Fermat quotient, Integers: Electronic Journal of Combinatorial Number Theory, 4 (2004) #A22.
- [2] Kılıç E., Ömür N. and Türker Ulutaş Y., Alternating sums of the powers of Fibonacci and Lucas numbers, Miskolc Math. Notes, 12-1 (2011) 87-103.
- [3] Kılıç E., Ömür N. and Türker Ulutaş, Y., Some finite sums involving generalized Fibonacci and Lucas numbers, Discrete Dynamics in Nature and Society, (2011) 1-11, doi:10.1155/2011/284261.
- [4] Koparal S. and Ömür N., On congruences related to central binomial coefficients, harmonic and Lucas numbers, Turkish Journal of Mathematics, 40 (2016) 973-985.
- [5] Melham R.S., Certain classes of finite sums that involve generalized Fibonacci and Lucas numbers, The Fibonacci Quarterly, 42-1 (2004) 47–54.
- [6] Ömür N. and Koparal S., Some congruences related to harmonic numbers and the terms of the second order sequences, Mathematica Moravica, 20 (2016) 23-37.
- [7] Sun Z.W., Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc., 140-2 (2012) 415-428.
- [8] Sun Z.W. and Zhao L.L., Arithmetic theory of harmonic numbers (II), Colloq. Math., 130-1 (2013) 67-78.
- [9] Wolstenholme J., On certain properties of prime numbers, Quart. J. Math., 5 (1862) 35-39.