Research Article
BibTex RIS Cite
Year 2021, , 728 - 734, 24.09.2021
https://doi.org/10.17776/csj.892438

Abstract

References

  • [1] Guth A. H., The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D, 23 (1981) 347-356.
  • [2] Linde A. D., A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett., 108B (1982) 389-393.
  • [3] Albrecht A., Steinhardt P. J., Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett., 48 (1982) 1220-1223.
  • [4] Linde A. D., Chaotic Inflation, Phys. Lett., 129B (1983) 177-181.
  • [5] Martin J., Ringeval C., Vennin V., Encyclopædia Inflationaris, Phys. Dark Univ., 5-6 (2014) 75-235, arXiv:1303.3787.
  • [6] Aghanim N. et al. [Planck Collaboration], Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641 (2020) A6, arXiv:1807.06209.
  • [7] Akrami Y. et al. [Planck Collaboration], Planck 2018 results. X. Constraints on inflation, Astron. Astrophys., 641 (2020) A10, arXiv:1807.06211.
  • [8] Ade P. A. R. et al. [BICEP2 and Keck Array Collaborations], BICEP2 / Keck Array x: Constraints on Primordial Gravitational Waves using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season, Phys. Rev. Lett., 121 (2018) 221301, arXiv:1810.05216.
  • [9] Callan, Jr. C. G., Coleman S. R., Jackiw R., A New improved energy-momentum tensor, Annals Phys., 59 (1970) 42-73.
  • [10] Bezrukov F., Magnin A., Shaposhnikov M., Sibiryakov S., Higgs inflation: consistency and generalisations, JHEP, 1101 (2011) 016, arXiv:1008.5157.
  • [11] Bostan N., Güleryüz Ö., Şenoğuz V. N., Inflationary predictions of double-well, Coleman-Weinberg, and hilltop potentials with non-minimal coupling, JCAP, 1805 no. 05 (2018) 046, arXiv:1802.04160.
  • [12] Bezrukov F. L., Shaposhnikov M., The Standard Model Higgs boson as the inflaton, Phys. Lett. B, 659 (2008) 703-706, arXiv:0710.3755.
  • [13] Kallosh R., Linde A., Roest D., Universal Attractor for Inflation at Strong Coupling, Phys. Rev. Lett., 112 no. 1 (2014) 011303, arXiv:1310.3950.
  • [14] Bauer F., Demir D. A., Inflation with Non-Minimal Coupling: Metric versus Palatini Formulations, Phys. Lett. B, 665 (2008) 222-226, arXiv:0803.2664.
  • [15] Padmanabhan T., Holographic gravity and the surface term in the Einstein-Hilbert action, Braz. J. Phys., 35 (2005) 362-372, arXiv:gr-qc/0412068.
  • [16] Palatini A., Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton, Rendiconti del Circolo Matematico di Palermo (1884-1940), 43(1) (1919) 203-212.
  • [17] York, Jr J. W., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett., 28 (1972) 1082-1085.
  • [18] Tenkanen T., Resurrecting Quadratic Inflation with a non-minimal coupling to gravity, JCAP, 1712 no. 12 (2017) 001, arXiv:1710.02758.
  • [19] Rasanen S., Wahlman P., Higgs inflation with loop corrections in the Palatini formulation, JCAP, 1711 no. 11 (2017) 047, arXiv:1709.07853.
  • [20] Rubio J., Tomberg E. S., Preheating in Palatini Higgs inflation, JCAP, 1904 (2019) 021.
  • [21] Fu C., Wu P., Yu H., Inflationary dynamics and preheating of the nonminimally coupled inflaton field in the metric and Palatini formalisms, Phys. Rev. D, 96 no. 10 (2017) 103542, arXiv:1801.04089.
  • [22] Marzola L., Racioppi A., Raidal M., Urban F. R., Veermäe H., Non-minimal CW inflation, electroweak symmetry breaking and the 750 GeV anomaly, JHEP, 1603 (2016) 190, arXiv:1512.09136.
  • [23] Marzola L., Racioppi A., Minimal but non-minimal inflation and electroweak symmetry breaking, JCAP, 1610 no. 10 (2016) 010, arXiv:1606.06887.
  • [24] Dimopoulos K., Owen C., Racioppi A., Loop inflection-point inflation, Astropart. Phys., 103 (2018) 16-20, arXiv:1706.09735.
  • [25] Kannike K., Racioppi A., Raidal M., Linear inflation from quartic potential, JHEP, 1601 (2016) 035, arXiv:1509.05423.
  • [26] Fujii Y., Maeda K., The scalar-tensor theory of gravitation, Cambridge, UK: Cambridge University Press, (2007).
  • [27] Lyth D. H., Liddle A. R., The primordial density perturbation: Cosmology, inflation and the origin of structure, Cambridge, UK: Cambridge Univ. Pr., (2009).
  • [28] Linde A., Noorbala M., Westphal A., Observational consequences of chaotic inflation with nonminimal coupling to gravity, JCAP, 1103 (2011) 013, arXiv:1101.2652.
  • [29] Husdal L., On Effective Degrees of Freedom in the Early Universe, Galaxies, 4 no. 4 (2016) 78, arXiv:1609.04979.
  • [30] Gialamas I. D., Lahanas A. B., Reheating in R2 Palatini inflationary models, Phys. Rev. D, 101 no. 8 (2020) 084007, arXiv:1911.11513.
  • [31] Coleman S. R., Weinberg E. J., Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D, 7 (1973) 1888-1910.
  • [32] Enqvist K., Karciauskas M., Does Planck really rule out monomial inflation?, JCAP, 1402 (2014) 034, arXiv:1312.5944.
  • [33] Weinberg E. J., Radiative corrections as the origin of spontaneous symmetry breaking, Ph.D. Thesis, Harvard University, Department of Physics, April 1973, arXiv: hep-th/0507214, arXiv:1005.5161.
  • [34] Okada N., Rehman M. U., Shafi Q., Tensor to Scalar Ratio in Non-Minimal ϕ4 Inflation, Phys. Rev. D, 82 (2010) 043502, arXiv:1005.5161.
  • [35] De Simone A., Hertzberg M. P., Wilczek F., Running Inflation in the Standard Model, Phys. Lett. B, 678 (2009) 1-8, arXiv:0812.4946.
  • [36] Barvinsky A. O., Kamenshchik A. Y., Kiefer C., Starobinsky A. A., Steinwachs C., Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP, 0912 (2009) 003, arXiv:0904.1698.
  • [37] Barvinsky A. O., Kamenshchik A. Y., Kiefer C., Starobinsky A. A., Steinwachs C. F., Higgs boson, renormalization group, and naturalness in cosmology, Eur. Phys. J. C, 72 (2012) 2219, arXiv:0910.1041.
  • [38] M. Remazeilles et al. [CORE Collaboration], Exploring cosmic origins with CORE: B-mode component separation, JCAP, 1804 no. 04 (2018) 023, arXiv:1704.04501.

Preheating in radiatively corrected φ4 inflation with non-minimal coupling in Palatini formulation

Year 2021, , 728 - 734, 24.09.2021
https://doi.org/10.17776/csj.892438

Abstract

We discuss the impact of the preheating stage due to the interaction of the inflaton to fermions in Palatini formulation. In Palatini inflation with large non-minimal coupling, the field is allowed to return to the plateau region during the reheating stage, therefore the average equation of state per oscillations is closer to -1 rather than 1\/3. The incursion in the plateau, however, leads to a highly efficient tachyonic instability, which is able to reheat the Universe in less than one e-fold. By taking prescription II into account, which is discussed in the literature, we calculate the spectral index n_s and the tensor-to-scalar ratio r in the wide range of κ- ξ. We will show the results which are compatible with the data given by the Keck Array/BICEP2 and Planck collaborations.

References

  • [1] Guth A. H., The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D, 23 (1981) 347-356.
  • [2] Linde A. D., A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett., 108B (1982) 389-393.
  • [3] Albrecht A., Steinhardt P. J., Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett., 48 (1982) 1220-1223.
  • [4] Linde A. D., Chaotic Inflation, Phys. Lett., 129B (1983) 177-181.
  • [5] Martin J., Ringeval C., Vennin V., Encyclopædia Inflationaris, Phys. Dark Univ., 5-6 (2014) 75-235, arXiv:1303.3787.
  • [6] Aghanim N. et al. [Planck Collaboration], Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641 (2020) A6, arXiv:1807.06209.
  • [7] Akrami Y. et al. [Planck Collaboration], Planck 2018 results. X. Constraints on inflation, Astron. Astrophys., 641 (2020) A10, arXiv:1807.06211.
  • [8] Ade P. A. R. et al. [BICEP2 and Keck Array Collaborations], BICEP2 / Keck Array x: Constraints on Primordial Gravitational Waves using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season, Phys. Rev. Lett., 121 (2018) 221301, arXiv:1810.05216.
  • [9] Callan, Jr. C. G., Coleman S. R., Jackiw R., A New improved energy-momentum tensor, Annals Phys., 59 (1970) 42-73.
  • [10] Bezrukov F., Magnin A., Shaposhnikov M., Sibiryakov S., Higgs inflation: consistency and generalisations, JHEP, 1101 (2011) 016, arXiv:1008.5157.
  • [11] Bostan N., Güleryüz Ö., Şenoğuz V. N., Inflationary predictions of double-well, Coleman-Weinberg, and hilltop potentials with non-minimal coupling, JCAP, 1805 no. 05 (2018) 046, arXiv:1802.04160.
  • [12] Bezrukov F. L., Shaposhnikov M., The Standard Model Higgs boson as the inflaton, Phys. Lett. B, 659 (2008) 703-706, arXiv:0710.3755.
  • [13] Kallosh R., Linde A., Roest D., Universal Attractor for Inflation at Strong Coupling, Phys. Rev. Lett., 112 no. 1 (2014) 011303, arXiv:1310.3950.
  • [14] Bauer F., Demir D. A., Inflation with Non-Minimal Coupling: Metric versus Palatini Formulations, Phys. Lett. B, 665 (2008) 222-226, arXiv:0803.2664.
  • [15] Padmanabhan T., Holographic gravity and the surface term in the Einstein-Hilbert action, Braz. J. Phys., 35 (2005) 362-372, arXiv:gr-qc/0412068.
  • [16] Palatini A., Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton, Rendiconti del Circolo Matematico di Palermo (1884-1940), 43(1) (1919) 203-212.
  • [17] York, Jr J. W., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett., 28 (1972) 1082-1085.
  • [18] Tenkanen T., Resurrecting Quadratic Inflation with a non-minimal coupling to gravity, JCAP, 1712 no. 12 (2017) 001, arXiv:1710.02758.
  • [19] Rasanen S., Wahlman P., Higgs inflation with loop corrections in the Palatini formulation, JCAP, 1711 no. 11 (2017) 047, arXiv:1709.07853.
  • [20] Rubio J., Tomberg E. S., Preheating in Palatini Higgs inflation, JCAP, 1904 (2019) 021.
  • [21] Fu C., Wu P., Yu H., Inflationary dynamics and preheating of the nonminimally coupled inflaton field in the metric and Palatini formalisms, Phys. Rev. D, 96 no. 10 (2017) 103542, arXiv:1801.04089.
  • [22] Marzola L., Racioppi A., Raidal M., Urban F. R., Veermäe H., Non-minimal CW inflation, electroweak symmetry breaking and the 750 GeV anomaly, JHEP, 1603 (2016) 190, arXiv:1512.09136.
  • [23] Marzola L., Racioppi A., Minimal but non-minimal inflation and electroweak symmetry breaking, JCAP, 1610 no. 10 (2016) 010, arXiv:1606.06887.
  • [24] Dimopoulos K., Owen C., Racioppi A., Loop inflection-point inflation, Astropart. Phys., 103 (2018) 16-20, arXiv:1706.09735.
  • [25] Kannike K., Racioppi A., Raidal M., Linear inflation from quartic potential, JHEP, 1601 (2016) 035, arXiv:1509.05423.
  • [26] Fujii Y., Maeda K., The scalar-tensor theory of gravitation, Cambridge, UK: Cambridge University Press, (2007).
  • [27] Lyth D. H., Liddle A. R., The primordial density perturbation: Cosmology, inflation and the origin of structure, Cambridge, UK: Cambridge Univ. Pr., (2009).
  • [28] Linde A., Noorbala M., Westphal A., Observational consequences of chaotic inflation with nonminimal coupling to gravity, JCAP, 1103 (2011) 013, arXiv:1101.2652.
  • [29] Husdal L., On Effective Degrees of Freedom in the Early Universe, Galaxies, 4 no. 4 (2016) 78, arXiv:1609.04979.
  • [30] Gialamas I. D., Lahanas A. B., Reheating in R2 Palatini inflationary models, Phys. Rev. D, 101 no. 8 (2020) 084007, arXiv:1911.11513.
  • [31] Coleman S. R., Weinberg E. J., Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D, 7 (1973) 1888-1910.
  • [32] Enqvist K., Karciauskas M., Does Planck really rule out monomial inflation?, JCAP, 1402 (2014) 034, arXiv:1312.5944.
  • [33] Weinberg E. J., Radiative corrections as the origin of spontaneous symmetry breaking, Ph.D. Thesis, Harvard University, Department of Physics, April 1973, arXiv: hep-th/0507214, arXiv:1005.5161.
  • [34] Okada N., Rehman M. U., Shafi Q., Tensor to Scalar Ratio in Non-Minimal ϕ4 Inflation, Phys. Rev. D, 82 (2010) 043502, arXiv:1005.5161.
  • [35] De Simone A., Hertzberg M. P., Wilczek F., Running Inflation in the Standard Model, Phys. Lett. B, 678 (2009) 1-8, arXiv:0812.4946.
  • [36] Barvinsky A. O., Kamenshchik A. Y., Kiefer C., Starobinsky A. A., Steinwachs C., Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP, 0912 (2009) 003, arXiv:0904.1698.
  • [37] Barvinsky A. O., Kamenshchik A. Y., Kiefer C., Starobinsky A. A., Steinwachs C. F., Higgs boson, renormalization group, and naturalness in cosmology, Eur. Phys. J. C, 72 (2012) 2219, arXiv:0910.1041.
  • [38] M. Remazeilles et al. [CORE Collaboration], Exploring cosmic origins with CORE: B-mode component separation, JCAP, 1804 no. 04 (2018) 023, arXiv:1704.04501.
There are 38 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Nilay Bostan 0000-0002-1129-4345

Publication Date September 24, 2021
Submission Date March 7, 2021
Acceptance Date July 20, 2021
Published in Issue Year 2021

Cite

APA Bostan, N. (2021). Preheating in radiatively corrected φ4 inflation with non-minimal coupling in Palatini formulation. Cumhuriyet Science Journal, 42(3), 728-734. https://doi.org/10.17776/csj.892438