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 Abstract  
We discuss the impact of the preheating stage due to the interaction of the inflaton to fermions 
in Palatini formulation. In Palatini inflation with large non-minimal coupling, the field is 
allowed to return to the plateau region during the reheating stage, therefore the average 
equation of state per oscillations is closer to −1 rather than 1/3. The incursion in the plateau, 
however, leads to a highly efficient tachyonic instability, which is able to reheat the Universe 
in less than one e-fold. By taking prescription II into account, which is discussed in the 
literature, we calculate the spectral index ns and the tensor-to-scalar ratio r in the wide range 
of κ −  ξ. We will show the results which are compatible with the data given by the Keck 
Array/BICEP2 and Planck collaborations. 
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1. Introduction 

Inflation [1-4] is an early period of nearly exponential 
expansion of the universe, and it has become a solution 
for several shortcomings such as the horizon, flatness, 
and unobserved magnetic monopoles since its proposal 
around 1980. The theory of cosmic inflation gives an 
acceptable explanation of the large-scale homogeneity 
of the universe, as well as the primordial density 
perturbations that grow into the cosmic structure. 
These primordial perturbations evolve in order to 
produce the observed large-scale structure and the 
cosmic microwave background (CMB) temperature 
anisotropy. In addition to this, several inflationary 
models have been suggested [5], and most of them are 
defined by the slow-rolling scalar field which is called 
the inflaton. Predictions of these models are currently 
being tested by polarization observations and CMB 
temperature anisotropies [6, 7]. In particular, the last 
results released by the Keck Array/BICEP2 and Planck 
collaborations [8] cast robust constraints on the tensor-
to-scalar ratio (𝑟𝑟), which explains the amplitude of 
primordial gravitational waves and the scale of 
inflation. As a result, the predictions of the simple 
monomial inflation models are ruled out at level, thus 
the models of non-minimally coupled to gravity 
become the most popular ones. 

In this work, we take models of inflation with non-
minimal coupling to gravity (𝜉𝜉𝜙𝜙2𝑅𝑅) into account, 
where 𝜉𝜉 is the non-minimal coupling parameter, 𝜙𝜙 is 

the scalar field (inflaton) and 𝑅𝑅 is the Ricci scalar. 
𝜉𝜉𝜙𝜙2𝑅𝑅 term is necessary to provide the 
renormalizability of the scalar field theory in curved 
space-time [9]. In addition, the predictions of the 
inflationary models can change significantly according 
to the coefficient of this coupling term [5]. We show 
how the values of 𝑛𝑛𝑠𝑠 and 𝑟𝑟 change for the preheating 
stage due to the interactions of the inflaton to fermions 
in Palatini formulation by using prescription II, in the 
presence of the non-minimal coupling parameter 𝜉𝜉. In 
the literature, many articles have already studied 
inflation with non-minimal coupling in Metric 
formalism [10–12]. In particular, the most favorite one 
is the scenario where the Standard Model Higgs scalar 
[12] is the inflaton. Furthermore, in the Metric 
formulation, all model’s asymptote to a universal 
attractor [13], which is called the Starobinsky model, 
for the large values of 𝜉𝜉 independent of the original 
scalar potential. On the other hand, the attractor 
behavior of the Starobinsky model is lost in the Palatini 
formulation, and 𝑟𝑟 can be much smaller in the Palatini 
formulation compared to the Metric one [14]. Also, 
consideration of the gravitational degrees of freedom 
is necessary for the presence of non-minimal coupling 
to gravity. In the metric formulation of gravity, the 
independent variables are the metric and its first 
derivatives [15], while in the Palatini formulation, the 
independent variables are the connection and the 
metric [16]. The predictions of these two formalisms 
correspond to the same equations of motion, therefore 
they describe equivalent physical theories. However, 
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in the case of non-minimal coupling between gravity 
and matter, such equivalence disappears, and the two 
formulations illustrate different gravity theories [14, 
17–19]. In the literature, the Palatini formulation of 
inflation with non-minimal coupling was discussed in 
refs. [14, 19-21]. The Palatini self-interaction potential 
𝑉𝑉(𝜙𝜙) was analyzed in ref. [14], and they figured out 
the observational parameters 𝑛𝑛𝑠𝑠 ≃ 0.968 and 𝑟𝑟 ≃
10−14 in the large-field limit. Also, Palatini Higgs 
inflation was examined in ref. [19], and they showed 
the range of the tensor-to-scalar ratio as 1 × 10−13 <
𝑟𝑟 < 2 × 10−5. According to these papers, 𝑟𝑟 takes very 
small values in Palatini formulation. In addition to this, 
it was showed that the radiative corrections to the 
inflationary potential can play a pivotal role [22–24], 
in the case of non-minimal coupling to gravity, 
generating the Planck scale dynamically [25]. 

In this paper, we study the impact of the preheating 
stage in Palatini radiatively corrected 𝜙𝜙4 inflation by 
using prescription II and the coupling of the inflaton to 
fermions. As compared to the metric formulation, the 
entropy production in Palatini Higgs inflation appears 
significantly more effective [20], decreasing the 
number of e-folds required to solve the flatness and 
horizon problems, producing a less spectral tilt for the 
primordial density perturbations. Furthermore, ref. 
[20] showed that after inflation, the slow decay of the 
Higgs oscillations allows the field to return to the 
plateau of the potential periodically during the 
reheating stage. In addition, in the large-field limit, the 
effective mass of the Higgs becomes negative, 
allowing for the exponential creation of Higgs 
excitations. Consequently, the preheating stage of the 
Palatini Higgs inflation is primarily instantaneous and 
this case decreases the value of 𝑁𝑁∗ required to solve the 
Hot Big-Bang shortcomings [20]. The paper is 
organized as follows: the non-minimal inflation with 
Palatini formalism is presented in section 2. In section 
3, we explain the radiatively corrected 𝜙𝜙4 potential 
with radiative corrections. In section 4, we numerically 
calculate the impact of the preheating stage in Palatini 
radiatively corrected 𝜙𝜙4 inflation for prescription II 
and the coupling of inflaton to fermions, and finally, 
we discuss our results in section 5. 

2. Non-minimal inflation in Palatini 
formulation 

Assuming the following Lagrangian density for a 
scalar-tensor theory in the Jordan frame with non-
minimally coupled scalar field 𝜙𝜙: 
ℒ𝒥𝒥
√−𝑔𝑔

= 1
2
𝐹𝐹(𝜙𝜙)𝑅𝑅 − 1

2
𝑔𝑔𝜇𝜇𝜇𝜇𝜕𝜕𝜇𝜇𝜙𝜙𝜕𝜕𝜇𝜇𝜙𝜙 − 𝑉𝑉𝐽𝐽(𝜙𝜙) , (1) 

where the subscript 𝐽𝐽 indicates that the Lagrangian is 
described in a Jordan frame. In addition, 𝑔𝑔𝜇𝜇𝜇𝜇 is a 
metric tensor, 𝐹𝐹(𝜙𝜙) is a non-minimal coupling 
function and 𝐹𝐹(𝜙𝜙) = 1 + 𝜉𝜉𝜙𝜙2. The Lagrangian 
consists of a canonical kinetic term and a potential 
𝑉𝑉𝐽𝐽(𝜙𝜙) in the Jordan frame. We consider the units where 
the reduced Planck scale, 𝑚𝑚𝑃𝑃 = 1/√8𝜋𝜋𝜋𝜋 ≈ 2.4 ×
1018 GeV, is fixed equal to unity, thus we require 
𝐹𝐹(𝜙𝜙) → 1 after inflation. Here, 𝜋𝜋 is a gravitational 
constant. Furthermore, to avoid repulsive gravity, we 
suppose 𝐹𝐹(𝜙𝜙) > 0. This property of 𝐹𝐹(𝜙𝜙) is 
independent of the formulation of gravity, such as 
Metric and Palatini. 

In the metric formulation, the connection is described 
as a function of a metric tensor called Levi-Civita 
connection 𝛤𝛤� = 𝛤𝛤�(𝑔𝑔𝜇𝜇𝜇𝜇): 

𝛤𝛤�𝛼𝛼𝛼𝛼
𝜆𝜆 = 1

2
𝑔𝑔𝜆𝜆𝜌𝜌�𝜕𝜕𝛼𝛼𝑔𝑔𝛼𝛼𝜌𝜌 + 𝜕𝜕𝛼𝛼𝑔𝑔𝜌𝜌𝛼𝛼 − 𝜕𝜕𝜌𝜌𝑔𝑔𝛼𝛼𝛼𝛼�. (2) 

Unlike the metric formulation, 𝑔𝑔𝜇𝜇𝜇𝜇 and 𝛤𝛤 are 
independent variables in the Palatini formalism, and 
the only constraint is that the connection is torsion-
free, 𝛤𝛤𝛼𝛼𝛼𝛼

𝜆𝜆 = 𝛤𝛤𝛼𝛼𝛼𝛼
𝜆𝜆 . By solving the EoM, we obtain [14] 

𝛤𝛤𝛼𝛼𝛼𝛼
𝜆𝜆 = 𝛤𝛤𝛼𝛼𝛼𝛼

𝜆𝜆
+ 𝛿𝛿𝛼𝛼𝜆𝜆𝜕𝜕𝛼𝛼𝜔𝜔(𝜙𝜙) + 𝛿𝛿𝛼𝛼

𝜆𝜆𝜕𝜕𝛼𝛼𝜔𝜔(𝜙𝜙) −
𝑔𝑔𝛼𝛼𝛼𝛼𝜕𝜕𝜆𝜆𝜔𝜔(𝜙𝜙), (3) 

where 

𝜔𝜔(𝜙𝜙) = ln�𝐹𝐹(𝜙𝜙). (4) 

Due to the fact that the connections (Eqs. (2) and (3)) 
are different, the metric and Palatini formalisms 
correspond to two different theories of gravity. On the 
one hand, we can explain the differences by taking into 
account the problem in the Einstein frame by means of 
the conformal transformation. 

In order to calculate the observational parameters, it is 
more efficient to switch to the Einstein frame by using 
a Weyl rescaling 𝑔𝑔𝐸𝐸,𝜇𝜇𝜇𝜇 = 𝑔𝑔𝐽𝐽,𝜇𝜇𝜇𝜇/𝐹𝐹(𝜙𝜙). Then the 
Einstein frame Lagrangian density becomes [26] 
ℒ𝐸𝐸

√−𝑔𝑔𝐸𝐸
= 1

2
𝑅𝑅𝐸𝐸 −

1
2𝑍𝑍(𝜙𝜙)𝑔𝑔𝐸𝐸

𝜇𝜇𝜇𝜇𝜕𝜕𝜇𝜇𝜙𝜙𝜕𝜕𝜇𝜇𝜙𝜙 − 𝑉𝑉𝐸𝐸(𝜙𝜙) , (5) 

where 

𝑍𝑍−1(𝜙𝜙) = 1
𝐹𝐹(𝜙𝜙)

  ,   𝑉𝑉𝐸𝐸(𝜙𝜙) = 𝑉𝑉𝐽𝐽(𝜙𝜙)
𝐹𝐹(𝜙𝜙)2

 , (6) 

in the Palatini formalism. By making a field 
redefinition 

dσ = dϕ
�𝑍𝑍(𝜙𝜙)

 . (7) 

We find the Lagrangian density for a minimally 
coupled scalar field 𝜎𝜎 with a canonical kinetic term. 
Here, 𝜎𝜎 is a canonical scalar field. As a consequence, 



Bostan/ Cumhuriyet Sci. J., 42(3) (2021) 728-734 

730 
 

for the Palatini formalism, the field redefinition is 
induced just by rescaling the inflaton kinetic term, and 
it does not include the Jordan frame Ricci scalar. On 
the other hand, in the Metric formalism, the field 
redefinition consists of the transformation of the 
Jordan frame Ricci scalar and the rescaling of the 
kinetic term of the Jordan frame scalar field [14]. 
Therefore, we can say that the difference between the 
metric and Palatini formalisms correspond to the 
different definitions of 𝜎𝜎 with the different non-
minimal kinetic terms including 𝜙𝜙. 

In the large-field limit, for 𝐹𝐹(𝜙𝜙) = 1 + 𝜉𝜉𝜙𝜙2, (|𝜉𝜉|𝜙𝜙2 ≫
1), we can find 

𝜙𝜙 ≃ 1
�𝜉𝜉

sinh�𝜎𝜎�𝜉𝜉�, (8) 

in the Palatini formalism. By using eq. (8), the 
inflationary potential can be described in terms of 𝜎𝜎, so 
that we can obtain the slow-roll parameters in Palatini 
formalism for the |𝜉𝜉|𝜙𝜙2 ≫ 1 limit in terms of 𝜎𝜎. 

The observational parameters for the inflationary 
dynamics can be defined by the following slow-roll 
parameters [27], 

𝜖𝜖 = 1
2
�𝑉𝑉𝜎𝜎
𝑉𝑉
�
2
  ,  𝜂𝜂 = 𝑉𝑉𝜎𝜎𝜎𝜎

𝑉𝑉
, (9) 

where 𝜎𝜎's in the subscript denote derivatives with 
respect to the canonical scalar field. Observational 
parameters, i.e. the spectral index 𝑛𝑛𝑠𝑠 and the tensor-to-
scalar ratio 𝑟𝑟 can be expressed in terms of the slow-roll 
parameters as, 

𝑛𝑛𝑠𝑠 = 1 − 6𝜖𝜖 + 2𝜂𝜂 ,  𝑟𝑟 = 16𝜖𝜖. (10) 

The number of e-folds in the slow-roll approximation 
is 

𝑁𝑁∗ = � 𝑉𝑉dσ
𝑉𝑉𝜎𝜎

𝜎𝜎∗

𝜎𝜎𝑒𝑒
 , (11) 

where the subscript “  
∗” indicates that the scale 

corresponding to 𝑘𝑘∗ exited the horizon for that 
quantity, 𝑘𝑘∗ = 0.002 Mpc−1 and 𝜎𝜎𝑒𝑒 is the inflaton 
value at the end of inflation, which we obtain by using 
𝜖𝜖(𝜎𝜎𝑒𝑒) = 1. 

The amplitude of the curvature power spectrum is 
given in the form 

Δℛ = 1
2√3𝜋𝜋

𝑉𝑉3/2

|𝑉𝑉𝜎𝜎| . (12) 

The best fit value for the pivot scale 𝑘𝑘∗ = 0.002 
Mpc−1 is Δℛ2 ≈ 2.1 × 10−9 [6] from the Planck results. 

Furthermore, we reproduce the slow-roll parameters in 
terms of the original scalar field 𝜙𝜙 to use them in 
numerical calculations. By using them together with 

the Eqs. (7) and (9), slow-roll parameters can be 
figured out in terms of 𝜙𝜙 [28] 

𝜖𝜖 = 𝑍𝑍𝜖𝜖𝜙𝜙 ,   𝜂𝜂 = 𝑍𝑍𝜂𝜂𝜙𝜙 + sgn(𝑉𝑉′)𝑍𝑍′�𝜖𝜖𝜙𝜙
2

, (13) 

where we defined 

𝜖𝜖𝜙𝜙 = 1
2
�𝑉𝑉

′

𝑉𝑉
�
2
  ,  𝜂𝜂𝜙𝜙 = 𝑉𝑉′′

𝑉𝑉
  . (14) 

Here, V′ ≡ d 𝑉𝑉/d 𝜙𝜙. Similarly, Eqs. (11) and (12) can 
be found in terms of 𝜙𝜙 by using 

𝑁𝑁∗ = sgn(𝑉𝑉′)� d𝜙𝜙
𝑍𝑍(𝜙𝜙)�2𝜖𝜖𝜙𝜙

𝜙𝜙∗

𝜙𝜙𝑒𝑒
 , (15) 

Δℛ = 1
2√3𝜋𝜋

𝑉𝑉3/2

√𝑍𝑍|𝑉𝑉′|
 . (16) 

These observable parameters that depend on the 
number of e-folds of inflation are required to solve 
such problems, i.e. the flatness and horizon. Following 
the standard method, we need 

1 = 𝑎𝑎0 = 𝑎𝑎0
𝑎𝑎RH

𝑎𝑎RH
𝑎𝑎e

𝑎𝑎e
𝑎𝑎∗
𝑎𝑎∗ = � 𝑔𝑔∗𝑠𝑠 RH

𝑔𝑔∗𝑠𝑠 now
�
1/3 𝑇𝑇RH

𝑇𝑇0

𝑘𝑘∗
𝐻𝐻∗

exp(Δ𝑁𝑁 +
𝑁𝑁∗), (17) 

where “0” denotes that the value of the corresponding 
quantity is the one at the present time (as used 
throughout this paper), and (“RH”) indicates that the 
value of the quantity is the one at the end of the 
reheating stage. In addition, (“e ”) indicates at the end 
of inflation, and (“*”) illustrates the pivot scale 
corresponding to 𝑘𝑘∗ = 0.002 Mpc−1 crosses the 
horizon. The quantity Δ𝑁𝑁 indicates the number of e-
folds of reheating, 𝑔𝑔∗𝑠𝑠 is the effective number of 
entropy degrees of freedom with 𝑔𝑔∗𝑠𝑠 RH = 𝑔𝑔∗ RH, as 
well as 𝑔𝑔∗𝑠𝑠 now = 3.94 [29] and 𝑇𝑇0 ≃ 2.7 K. 𝑇𝑇RH is the 
reheating temperature [30]. In ref. [20], 𝑁𝑁∗ is defined 
in the preheating stage of the Palatini Higgs inflation, 
which is necessarily instantaneous. Here, 𝑔𝑔∗𝑠𝑠 now 
shows the current value of the effective number of 
entropy degrees of freedom. After the inflation, almost 
all of the background energy density is converted to the 
radiation, and by solving eq. (17) for the condition of 
Δ𝑁𝑁 ≪ 1, 𝑁𝑁∗ can be found in the form [20] 

𝑁𝑁∗ ≃ 54.9− 1
4

log 𝜉𝜉, (18) 

this result is precise to an integer order of 𝑁𝑁∗. In section 
4, we numerically figure out the impact of the 
preheating stage in Palatini radiatively corrected 𝜙𝜙4 
inflation for prescription II and inflaton to fermions 
coupling by using eq. (18).  

3. Radiatively corrected 𝝓𝝓𝟒𝟒 potential with 
radiative corrections 
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For the description of the couplings of the inflaton with 
other fields, it is necessary to produce radiative 
corrections in the inflationary potential for effective 
reheating. These corrections can be defined at the 
leading order in the form [31–33], 

Δ𝑉𝑉(𝜙𝜙) = ∑ (−1)𝜈𝜈

64𝜋𝜋2
𝑀𝑀𝑖𝑖(𝜙𝜙)4𝑖𝑖 ln �𝑀𝑀𝑖𝑖(𝜙𝜙)2

𝜇𝜇2
�. (19) 

Here, 𝜈𝜈 is +1 (−1) for bosons (fermions), 𝜇𝜇 is a 
renormalization scale and 𝑀𝑀𝑖𝑖(𝜙𝜙) corresponds to the 
field-dependent mass. 

We consider the minimally coupled 𝜙𝜙4 potential 
interacting with another scalar 𝜒𝜒 and a Dirac fermion 
𝛹𝛹 in the form, 

𝑉𝑉(𝜙𝜙,𝜒𝜒,𝛹𝛹) = 𝜆𝜆
4
𝜙𝜙4 + ℎ𝜙𝜙𝛹𝛹�𝛹𝛹 +𝑚𝑚𝛹𝛹𝛹𝛹�𝛹𝛹 +

1
2
𝑔𝑔2𝜙𝜙2𝜒𝜒2 + 1

2
𝑚𝑚𝜒𝜒
2𝜒𝜒2. (20) 

Here, 𝜆𝜆 is a self-coupling constant, 𝑔𝑔 (ℎ) are bosons 
(fermions) coupling constants, and 𝑚𝑚𝛹𝛹 (𝑚𝑚𝜒𝜒) are the 

mass terms for Dirac fermions (scalars).  We assume 
that, with these approximations 

𝑔𝑔2𝜙𝜙2 ≫ 𝑚𝑚𝜒𝜒
2 ,   𝑔𝑔2 ≫ 𝜆𝜆,  

    ℎ𝜙𝜙 ≫ 𝑚𝑚𝛹𝛹 ,   ℎ2 ≫ 𝜆𝜆, (21) 

the inflationary potential consisting of the Coleman-
Weinberg one-loop corrections given by eq. (19) can 
be found in the form 

𝑉𝑉(𝜙𝜙) ≃ 𝜆𝜆
4
𝜙𝜙4 ± 𝜅𝜅𝜙𝜙4 ln �𝜙𝜙𝜇𝜇�, (22) 

where + (−) sign indicates the inflaton coupling to 
bosons (fermions). We can describe the coupling 
parameter as follows 

𝜅𝜅 ≡ 1
32𝜋𝜋2

|(𝑔𝑔4 − 4ℎ4)|. (23) 

Here, the potential in eq. (22) is just an approximation 
of the one-loop RG improved effective actions [34]. 

 

 

 
Figure 1. The top figure in light green (green) illustrates the regions in the κ − ξ plane where the ns and r values are inside 
the 95% (68%) CL contours based on data given by the Keck Array/BICEP2 and Planck collaborations [8]. Bottom figures 
display ns and r values in these regions. 
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As discussed in the literature, one of the two different 
prescriptions is prescription II that is typically used for 
the calculation of radiative corrections [35–38]. In 
prescription II, the field-dependent masses in the one-
loop Coleman-Weinberg potential are described in the 
Jordan frame, therefore eq. (22) corresponds to the 
one-loop Coleman-Weinberg potential in the Jordan 
frame. As a consequence, the Einstein frame potential 
for the interactions of the inflaton and fermions in 
prescription II is described by 

𝑉𝑉(𝜙𝜙) =
𝜆𝜆
4𝜙𝜙

4−𝜅𝜅𝜙𝜙4 ln�𝜙𝜙𝜇𝜇�

(1+𝜉𝜉𝜙𝜙2)2  . (24) 

We can say that the variation of the value of the 
renormalization scale does not affect the form of the 
potential in eq. (24). The form of the potential only 
changes with a shift in 𝜆𝜆. As a result, observational 
parameters do not change depending upon 𝜇𝜇 as well. 

4. Inflationary results 

In this section, we numerically investigate the effect of 
the preheating stage in Palatini radiatively corrected 
𝜙𝜙4 inflation for prescription II and coupling of the 
inflaton to fermions. Figure 1 displays the regions in 
the κ-ξ plane where the 𝑛𝑛𝑠𝑠 and 𝑟𝑟 values are inside the 
95% (68%) CL (confidence levels) contours based on 
data given by the Keck Array/BICEP2 and Planck 
collaborations. As it can be seen from Fig.1, for the 
values of 10−2 ≲ 𝜉𝜉 ≲ 104 and 10−15 ≲ 𝜅𝜅 ≲ 2.2 ×
10−14, observational parameters can be within the 
68% CL contour based on the data given by the Keck 
Array/BICEP2 and Planck collaborations, and their 
values are 𝑛𝑛𝑠𝑠 ≃ 0.963 and 10−7 ≲ 𝑟𝑟 ≲ 10−2. On the 
other hand, as 𝜅𝜅 increases, it reaches a maximum value, 
𝜅𝜅max, for each 𝜉𝜉 value. For 𝜅𝜅 > 𝜅𝜅max, there are no 
solutions that provide the inflationary dynamics. 
Furthermore, in the range of 104 ≲ 𝜉𝜉 ≲ 108 and 
10−15 ≲ 𝜅𝜅 ≲ 5 × 10−14, we find 0.958 ≲ 𝑛𝑛𝑠𝑠 ≲
0.961 and 10−12 ≲ 𝑟𝑟 ≲ 10−7. These values are in the 
95% CL contour based on the data given by the Keck 
Array/BICEP2 and Planck collaborations. As a result, 
for 104 ≲ 𝜉𝜉 ≲ 108 and 𝑁𝑁∗ ≃ 52, we obtain 0.958 ≲
𝑛𝑛𝑠𝑠 ≲ 0.961. Although still in 2𝜎𝜎 confidence limits, 
these 𝑛𝑛𝑠𝑠 values slightly disagreed with the 
observational results given by the Keck Array/BICEP2 
and Planck collaborations, as well as the values of 𝑟𝑟 are 
extremely tiny in the large 𝜉𝜉 limits. Ref. [20] also 
showed that for the preheating stage of Higgs inflation 
in Palatini formulation, 𝑛𝑛𝑠𝑠 ≃ 0.961 and 𝑟𝑟 values are 
very tiny for large 𝜉𝜉 values for the 𝑁𝑁∗ ≃ 51 and finally, 
the behavior of Starobinsky attractor in metric 
formulation for large 𝜉𝜉 values is lost for the potential 
we take into account. 

5. Conclusion 

In this paper, we described the non-minimal inflation 
in Palatini formulation in section 2, and then in section 
3, we briefly presented the radiatively corrected 𝜙𝜙4 
potential with radiative corrections. We numerically 
investigated the impact of the preheating stage on the 
observational parameters for this type of potential for 
fermions coupling in section 4.  

In general, we found that 𝑟𝑟 values are too small in the 
large-field limit, and the behavior of Starobinsky 
attractor in metric formulation for the large 𝜉𝜉 values 
disappears for the potential which we considered. 
Furthermore, we found that for the cases of 𝜅𝜅 > 𝜅𝜅max, 
there are no solutions that provide inflationary 
dynamics and for the values of 104 ≲ 𝜉𝜉 ≲ 108 and 
𝑁𝑁∗ ≃ 52, 𝑛𝑛𝑠𝑠 values are in 2𝜎𝜎 CL but marginally 
incompatible with the observational results. 

In the large-field limit, for the Palatini formulation, the 
process of entropy production emerges very efficiently 
and leads to the complete reduction of the inflaton 
condensate in an e-fold expansion of smaller than one 
[20]. As a consequence, in the preheating stage, 
Palatini inflation with the radiative corrections to the 
coupling of fermions in prescription II is necessarily 
instantaneous, and after the inflation, almost all of the 
background energy density is converted to the 
radiation. This decreases the value of 𝑁𝑁∗ required to 
solve the common Hot Big-Bang shortcomings, while 
an insignificantly smaller value for the spectral tilt 
produces. 

Finally, by the consideration of 𝒪𝒪(10−3) accuracy of 
future precision measurements [38], the predictions of 
Palatini formulation could be distinguished from the 
metric ones within forthcoming results, and assuming 
larger values of 𝑟𝑟 are obtained, the Palatini formulation 
can be ruled out. 
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