XRD and photoluminescence measurements of GaN grown on dome shaped patterned sapphire with different NH3 flow rates
Year 2021,
, 184 - 190, 29.03.2021
İsmail Altuntas
Abstract
The aim of the study is to understand the effects of NH3 flow rate in the initial part of high temperature (HT) GaN growth on structural and optical characteristics of the HT-GaN layer grown on dome shaped sapphire susbtrate by Metal Organic Chemical Vapor Deposition (MOCVD) system. High resolution x-ray diffraction (HRXRD) and photoluminescence (PL) measurements were performed to characterization the growing GaN epilayer. It is observed that the using of different NH3 flow rate in the initial part of HT-GaN growth has an effect on both full-width at half-maximum (FWHM) values obtained from HRXRD results and intensities of yellow luminescence peaks. It is seen that the FWHM values obtained from the symmetric (00.2) omega scan increased as the NH3 flow rates in the initial part of HT-GaN growth increased. It is demonstrated that the intensities of yellow luminescence peaks are very sensitive to NH3 flow rates in the initial part of HT-GaN growth.
Supporting Institution
Scientific Research Project Fund of Sivas Cumhuriyet University
Thanks
Nanophotonics Research and Application Center at Cumhuriyet University (CUNAM) and Sivas Cumhuriyet University Advanced Technology Research and Application Center (CUTAM)
References
- [1] Lee J.H., J.H. Lee, Enhanced Performance of Gan-Based Light Emitting Diode With Isoelectronic Al Doping Layer, Journal of Applied Physics., 105 (6) (2009).
- [2] Nakamura S., Senor M., Iwasa N., Nagahama S. I., High-Brightness InGaN Blue, Green And Yellow Light-Emitting Diodes With Quantum Well Structures, Japanese Journal of Applied Physics., 34 (7A) (1995) L797.
- [3] Nakamura S., Sonoh M., Nagahama S.I., Iwasa N., Yamada T., Matsushita T., Sugimoto Y., Kiyoku H., High-Power Long-Lifetime InGaN Multi-Quantum-Well-Structure Laser Diodes, Japanese Journal of Applied Physics., 36 (8B) (1997).
- [4] Youn D.H., Lee J.H., Kumar V., Lee K.S., Lee J.H., Adesida I., The Effects of Isoelectronic Al Doping and Process Optimization for the Fabrication of High-Power AlGaN-GaN HEMTs, IEEE Transactions on Electron Devices., 51 (5) (2004) 785-789.
- [5] Genç M., Sheremet V., Elçi M., Kasapoğlu A. E., Altuntaş İ., Demir İ., Eğin G., İslamoğlu S., Gür E., Muzafferoğlu N., Elagöz S., Gülseren O., Aydınlı A., Distributed Contact Flip Chip InGaN/GaN Blue LED; Comparison With Conventional LEDs, Superlattices and Microstructures., 128 (2019) 9-13.
- [6] Robin Y., Ding K., Demir İ., Clintock M., Elagöz S., Razeghi M., High Brightness Ultraviolet Light-Emitting Diodes Grown on Patterned Silicon Substrate, Materials Science in Semiconductor Processing., 90 (2019) 87-91.
- [7] Heying B., Wu X.H., Keller S., Li Y., Kapolnek D., Keller B.P., DenBaars S.P., Speck J.S., Role of Threading Dislocation Structure on the X‐Ray Diffraction Peak Widths in Epitaxial GaN Films, Applied Physics Letters., 68 (5) (1996) 643-645.
- [8] Liu L., Edgar J.H., Substrates For Gallium Nitride Epitaxy. Materials Science and Engineering: R: Reports., 37(3) (2002) 61-127.
- [9] Nakamura S., The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes And Laser Diodes, Science., 281 (5379) (1998) 956-961.
- [10] Benisty H., Neve H.D., Weisbuch C., Impact of Planar Microcavity Effects on Light Extraction-Part I: Basic Concepts and Analytical Trends, IEEE Journal of Quantum Electronics., 34 (9) (1998) 1612-1631.
- [11] Zhmakin A.I., Enhancement of Light Extraction From Light Emitting Diodes, Physics Reports., 498 (4-5) (2011) 189-241.
- [12] Kuznia J.N., Khan M.A., Olson D.T., Influence of Buffer Layers on the Deposition of High Quality Single Crystal GaN Over Sapphire Substrates, Journal of Applied Physics., 73 (9) (1993) 4700-4702.
- [13] Yi M.S., Lee H.H., Kim D.J., Park S.J., Noh D.Y., Effects of Growth Temperature on GaN Nucleation Layers, Applied Physics Letters., 75 (15) (1999) 2187-2189.
- [14] Chen J., Zhang S.M., Zhang B.S., Zhu J.J., Feng G., Shen X.M., Wang, Y.T., Yang, H., Zheng, W.C., Effects of Reactor Pressure on GaN Nucleation Layers and Subsequent GaN Epilayers Grown on Sapphire Substrate, Journal of Crystal Growth., 254 (3-4) (2003) 348-352.
- [15] Ito T., Sumiya M., Takano Y., Ohtsuka K., Fuke S., Influence of Thermal Annealing on GaN Buffer Layers and the Property of Subsequent GaN Layers Grown by Metalorganic Chemical Vapor Deposition, Japanese Journal of Applied Physics,. 38 (2R) (1999) 649.
- [16] Demir I., Altuntaş I., Kasapoğlu A.E., Mobtakeri S., Gür E., Elagöz S., Microstructural Evolution of MOVPE Grown GaN by the Carrier Gas, Semiconductors., 52 (16) (2018) 2030-2038.
- [17] Altuntas I., Demir I., Kasapoğlu A.E., Mobtakeri S., Gür E., Elagöz S., The Effects of Two-Stage HT-GaN Growth With Different V/III Ratios During 3D–2D Transition Journal of Physics D: Applied Physics., 51 (3) (2017).
- [18] Ashby C.I.H., Mitchell C.C., Han J., Missert N.A., Provencio P.P., Follstaedt D.W., Peake G.M., Griego L., Low-Dislocation-Density GaN From a Single Growth on a Textured Substrate, Applied Physics Letters., 77 (20) (2000) 3233-3235.
- [19] Dai Q., Schubert M.F., Kim M.H., Kim J.K., Schubert E.F., Koleske D.D., Crawford M.H., Lee S.R., Fischer A.J., Thaler G., Banas M.A., Internal Quantum Efficiency and Nonradiative Recombination Coefficient of GaInN/GaN Multiple Quantum Wells With Different Dislocation Densities, Applied Physics Letters., 94 (11) (2009).
- [20] Lester S.D., Ponce F.A., Craford M.G., Steigerwald D.S., High Dislocation Densities in High Efficiency GaN‐Based Light‐Emitting Diodes, Applied Physics Letters., 66 (10) (1995) 1249-1251.
- [21] Chierchia R., Böttcher T., Heinke H., Einfeldt S. Figge S., Hommel D., Microstructure of Heteroepitaxial GaN Revealed by X-Ray Diffraction, Journal of Applied Physics., 93 (11) (2003) 8918-8925.
- [22] Korbutowicz R., Kozlowski J., Dumiszewska E., Serafinczuk J., X‐Ray Characterization of Thick GaN Layers Grown By HVPE, Crystal Research and Technology: Journal of Experimental and Industrial Crystallography., 40 (4‐5) (2005) 503-508.
- [23] Moram M.A., Vickers M.E., X-Ray Diffraction of III-Nitrides, Reports on Progress in Physics., 72 (3) (2009) 036502.
- [24] Pittet P., Lu G.N., Galvan J.M., Bluet J.M., Anas İ., Giraud J.Y., Balosso J., PL Characterization of GaN Scintillator for Radioluminescence-Based Dosimetry, Optical Materials., 31 (10) (2009) 1421-1424.
- [25] Zhang H., Reber A.C., Geng L., Rabayda D., Wu H., Luo Z., Yao J., Khanna S.N., Formation of Al+ (C6H6)13: The Origin of Magic Number in Metal–Benzene Clusters Determined by the Nature of the Core, CCS Chemistry., 1 (5) (2019) 571-581.
- [26] Prall C., Kaspari C., Brunner F., Haberland K., Weyers M., Rueter D., In-Situ Photoluminescence Measurements During MOVPE Growth of GaN and InGaN MQW Structures, Journal of Crystal Growth., 415 (2015) 1-6.
- [27] Robins L.H., Bertness K.A., Barker J.M., Sanford N.A., Sclager J.B., Optical and Structural Study of GaN Nanowires Grown By Catalyst-Free Molecular Beam Epitaxy. II. Sub-Band-Gap Luminescence And Electron Irradiation Effects, Journal Of Applied Physics., 101 (11) (2007).
- [28] Reshchikov M.A., Evaluation of GaN by Photoluminescence Measurement, Physica Status Solidi c., 2011. 8 (7‐8) (2011) 2136-2138.