Research Article
BibTex RIS Cite
Year 2021, , 476 - 492, 30.06.2021
https://doi.org/10.17776/csj.680516

Abstract

References

  • [1] Ashkin A., Acceleration and trapping of particles by radiation pressure, Phys. Rev., 24(4) (1970) 156-159.
  • [2] Ashkin A., Dziedzic J. M., Stability of optical levitation by radiation pressure, Applied Physics Letters, 24(12) (1974) 586-588.
  • [3] Ashkin A., Dziedzic J.M., Optical levitation in high vacuum, Applied Physics Letters, 28(6) (1976) 333-335.
  • [4] Ashkin A., Dziedzic J.M., Optical Trapping and Manipulation of Viruses and Bacteria, Science, 235-4795 (1987) 1517-1520.
  • [5] Ashkin A., Dziedzic J.M., Yamane T., Optical trapping and manipulation of single cells using infrared laser beams, Nature, 330-6150 (1987) 769-771.
  • [6] Ashkin A., Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime, Biophysical Journal, 61(2) (1992) 569-582.
  • [7] Gauthier R.C., Wallace S., Optical levitation of spheres: analytical development and numerical computations of the force equations, J. Opt. Soc. Am. B., 12(9) (1995) 1680-1686.
  • [8] Kim S.B., Kim S.S, Radiation forces on spheres in loosely focused Gaussian beam: ray-optics regime, J. Opt. Soc. Am. B., 23(5) (2006) 897-903.
  • [9] Ganic D., Gan X., Gu M., Optical trapping force with annular and doughnut laser beams based on vectorial diffraction, Optics Express, 13(4) (2005) 1260-1265.
  • [10] Price C.J., Donnelly T.D., Giltrap S., Stuart N.H., Parker S., Patankar S., Lowe H.F., Drew D., Gumbrell E.T. and Smith R.A., An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets, Review of Scientific Instruments, 86(3) (2015) 033502.
  • [11] Sakai K. and Noda S., Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser, Electronics Letters, 43(2) (2007) 107-108.
  • [12] Zhang Y., Li Y., Qi J., Cui G., Liu H., Chen J., Zhao L., Xu J., Sun Q., Influence of absorption on optical trapping force of spherical particles in a focused Gaussian beam, J. Opt. A: Pure Appl. Opt., 10(8) (2008) 085001.
  • [13] Shahabadi, V., Ebrahim M., Daryoush A., Optimized anti-reflection core-shell microspheres for enhanced optical trapping by structured light beams, Scientific Reports, 11(1) (2021) 1-10.
  • [14] Kalume, A., Chuji W., Yong-Le P., Optical-Trapping Laser Techniques for Characterizing Airborne Aerosol Particles and Its Application in Chemical Aerosol Study, Micromachines, 12(4) (2021) 466.
  • [15] Komoto S. et al., Optical Trapping of Polystyrene Nanoparticles on Black Silicon: Implications for Trapping and Studying Bacteria and Viruses, ACS Applied Nano Materials, 3(10) (2020) 9831-9841.
  • [16] Barton J.P., Alexander D., Schaub S.A., Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam, J. Appl. Phys., 66(10) (1989) 4594-4602.
  • [17] Kim J.S., Lee S.S., Scattering of laser beams and the optical potential well for a homogeneous sphere, J. Opt. Soc. Am., 73(3) (1983) 303-312.
  • [18] Barton J.P., Alexander D., S. A. Schaub, Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam, J. Appl. Phys., 64(4) (1988) 1632-1639.
  • [19] Ashkin A., Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime, Biophys. J., 61(2) (1992) 569-582.
  • [20] Chang S., Lee S.S., Optical torque exerted on a homogeneous sphere levitated in circularly polarized fundamental-mode laser beam, J. Opt. Soc. Am. B., 2(11) (1985) 1853-1860.
  • [21] Ashkin A., Trapping of atoms by resonance radiation pressure, Phys. Rev. Lett., 40(12) (1978) 729-732.
  • [22] Ashkin A, Dziedzic J.M., Bjorkholm J.E., Chu S., Observation of a single-beam gradient force optical trap for dielectric particles, Optics Lett., 11(5) (1986) 288-290.
  • [23] Zhang Y., Li Y., Cui G., Liu H., Chen J., Xu J., Sun Q., Transverse optical trapping of spherical particle with strong absorption in a focused Gaussian beam, Proc. of SPIE, 6832-68320K-1 (2008).
  • [24] Usman A., Ching W., Masuhara H., Optical trapping of nanoparticles by ultrashort laser pulse, Science Progress, 96(1) (2013) 1-18.
  • [25] Choudhary D., Mossa A., Jadhav M., Cecconi C., Bio-molecular Applications of Recent Developments in Optical Tweezers, Biomolecules, 9(1) (2019) 23.
  • [26] Hempston D., Vovrosh J., Winstone G., Rashid M., Ulbricht H., Force sensing with an optically levitated charged nanoparticle, Appl. Phys. Lett., 111(13) (2017) 133111.
  • [27] Monteiro F., Ghosh S., Fine A.G., Moore D.C., Optical levitation of 10 nanogram spheres with nano-g acceleration sensitivity, Phys. Rev. A., 96(6) (2017) 063841.
  • [28] Kim J., Shin J.H., Stable, Free-space Optical Trapping and Manipulation of Sub-micron Particles in an Integrated Microfluidic Chip, Scientific Reports, 6 (2016) 33842.
  • [29] Vovrosh J., Rashid M., Hempston D., Bateman J., Paternostro M., H. Ulbricht, Parametric Feedback Cooling of Levitated Optomechanics in a Parabolic Mirror Trap, J. Opt. Soc. Am. B., 34(7) (2017) 1421-1428.
  • [30] Thorlabs Optical Tweezers Microscope System, Trapping Theory & Force Analysis. Available at: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=12442. Retrieved 2020.
  • [31] Wilson K.R., Swope W, Andersen H., Berens P., A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, J. Chem. Phys., 76(1) (1982) 637-649.
  • [32] Saleh B.E.A., Teich M.C., Fundamentals of Photonics, 2nd ed., New Jersey: John Wiley & Sons, (2007)
  • [33] Galvez E.J., Gaussian beams in the optics course, Am. J. Phys., 74(4) (2006) 355-361.
  • [34] Beijersbergen M.W., Allen L., Veen H.O., Woerdman J.P., Astigmatic laser mode converters and transfer of orbital angular momentum, Optics Communications, 96(3) (1993) 123-132.
  • [35] Zauderer E., Complex argument Hermite-Gaussian and Laguerre-Gaussian beams, J. Opt. Soc. Am. A., 3(4) (1986) 465-469.
  • [36] Gradshteyn I.S., Ryzhik I.M., Table of Integrals, Series and Products, 8th ed., California: Elsevier, (2015)

Computational analysis of optical trapping of transparent and reflecting micron-sized spherical particles

Year 2021, , 476 - 492, 30.06.2021
https://doi.org/10.17776/csj.680516

Abstract

In the ray-optics regime, we calculated the radial and axial force field on a micron-sized spherical particle in an optical levitation trap. The momentum change in the photon-stream path of tightly focused incident laser beam causes the calculated force field in the optical trap. The computational results for the force field are compared with the literature and a good agreement is obtained. Utilizing the benchmarked force field, the optical trapping dynamics of (i) a transparent spherical particle with continuous-wave 〖TEM〗_00 Gaussian beam and (ii) a reflecting spherical particle with continuous-wave 〖TEM〗_01^* Laguerre-Gaussian beam under various conditions are simulated in Matlab.

References

  • [1] Ashkin A., Acceleration and trapping of particles by radiation pressure, Phys. Rev., 24(4) (1970) 156-159.
  • [2] Ashkin A., Dziedzic J. M., Stability of optical levitation by radiation pressure, Applied Physics Letters, 24(12) (1974) 586-588.
  • [3] Ashkin A., Dziedzic J.M., Optical levitation in high vacuum, Applied Physics Letters, 28(6) (1976) 333-335.
  • [4] Ashkin A., Dziedzic J.M., Optical Trapping and Manipulation of Viruses and Bacteria, Science, 235-4795 (1987) 1517-1520.
  • [5] Ashkin A., Dziedzic J.M., Yamane T., Optical trapping and manipulation of single cells using infrared laser beams, Nature, 330-6150 (1987) 769-771.
  • [6] Ashkin A., Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime, Biophysical Journal, 61(2) (1992) 569-582.
  • [7] Gauthier R.C., Wallace S., Optical levitation of spheres: analytical development and numerical computations of the force equations, J. Opt. Soc. Am. B., 12(9) (1995) 1680-1686.
  • [8] Kim S.B., Kim S.S, Radiation forces on spheres in loosely focused Gaussian beam: ray-optics regime, J. Opt. Soc. Am. B., 23(5) (2006) 897-903.
  • [9] Ganic D., Gan X., Gu M., Optical trapping force with annular and doughnut laser beams based on vectorial diffraction, Optics Express, 13(4) (2005) 1260-1265.
  • [10] Price C.J., Donnelly T.D., Giltrap S., Stuart N.H., Parker S., Patankar S., Lowe H.F., Drew D., Gumbrell E.T. and Smith R.A., An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets, Review of Scientific Instruments, 86(3) (2015) 033502.
  • [11] Sakai K. and Noda S., Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser, Electronics Letters, 43(2) (2007) 107-108.
  • [12] Zhang Y., Li Y., Qi J., Cui G., Liu H., Chen J., Zhao L., Xu J., Sun Q., Influence of absorption on optical trapping force of spherical particles in a focused Gaussian beam, J. Opt. A: Pure Appl. Opt., 10(8) (2008) 085001.
  • [13] Shahabadi, V., Ebrahim M., Daryoush A., Optimized anti-reflection core-shell microspheres for enhanced optical trapping by structured light beams, Scientific Reports, 11(1) (2021) 1-10.
  • [14] Kalume, A., Chuji W., Yong-Le P., Optical-Trapping Laser Techniques for Characterizing Airborne Aerosol Particles and Its Application in Chemical Aerosol Study, Micromachines, 12(4) (2021) 466.
  • [15] Komoto S. et al., Optical Trapping of Polystyrene Nanoparticles on Black Silicon: Implications for Trapping and Studying Bacteria and Viruses, ACS Applied Nano Materials, 3(10) (2020) 9831-9841.
  • [16] Barton J.P., Alexander D., Schaub S.A., Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam, J. Appl. Phys., 66(10) (1989) 4594-4602.
  • [17] Kim J.S., Lee S.S., Scattering of laser beams and the optical potential well for a homogeneous sphere, J. Opt. Soc. Am., 73(3) (1983) 303-312.
  • [18] Barton J.P., Alexander D., S. A. Schaub, Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam, J. Appl. Phys., 64(4) (1988) 1632-1639.
  • [19] Ashkin A., Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime, Biophys. J., 61(2) (1992) 569-582.
  • [20] Chang S., Lee S.S., Optical torque exerted on a homogeneous sphere levitated in circularly polarized fundamental-mode laser beam, J. Opt. Soc. Am. B., 2(11) (1985) 1853-1860.
  • [21] Ashkin A., Trapping of atoms by resonance radiation pressure, Phys. Rev. Lett., 40(12) (1978) 729-732.
  • [22] Ashkin A, Dziedzic J.M., Bjorkholm J.E., Chu S., Observation of a single-beam gradient force optical trap for dielectric particles, Optics Lett., 11(5) (1986) 288-290.
  • [23] Zhang Y., Li Y., Cui G., Liu H., Chen J., Xu J., Sun Q., Transverse optical trapping of spherical particle with strong absorption in a focused Gaussian beam, Proc. of SPIE, 6832-68320K-1 (2008).
  • [24] Usman A., Ching W., Masuhara H., Optical trapping of nanoparticles by ultrashort laser pulse, Science Progress, 96(1) (2013) 1-18.
  • [25] Choudhary D., Mossa A., Jadhav M., Cecconi C., Bio-molecular Applications of Recent Developments in Optical Tweezers, Biomolecules, 9(1) (2019) 23.
  • [26] Hempston D., Vovrosh J., Winstone G., Rashid M., Ulbricht H., Force sensing with an optically levitated charged nanoparticle, Appl. Phys. Lett., 111(13) (2017) 133111.
  • [27] Monteiro F., Ghosh S., Fine A.G., Moore D.C., Optical levitation of 10 nanogram spheres with nano-g acceleration sensitivity, Phys. Rev. A., 96(6) (2017) 063841.
  • [28] Kim J., Shin J.H., Stable, Free-space Optical Trapping and Manipulation of Sub-micron Particles in an Integrated Microfluidic Chip, Scientific Reports, 6 (2016) 33842.
  • [29] Vovrosh J., Rashid M., Hempston D., Bateman J., Paternostro M., H. Ulbricht, Parametric Feedback Cooling of Levitated Optomechanics in a Parabolic Mirror Trap, J. Opt. Soc. Am. B., 34(7) (2017) 1421-1428.
  • [30] Thorlabs Optical Tweezers Microscope System, Trapping Theory & Force Analysis. Available at: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=12442. Retrieved 2020.
  • [31] Wilson K.R., Swope W, Andersen H., Berens P., A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, J. Chem. Phys., 76(1) (1982) 637-649.
  • [32] Saleh B.E.A., Teich M.C., Fundamentals of Photonics, 2nd ed., New Jersey: John Wiley & Sons, (2007)
  • [33] Galvez E.J., Gaussian beams in the optics course, Am. J. Phys., 74(4) (2006) 355-361.
  • [34] Beijersbergen M.W., Allen L., Veen H.O., Woerdman J.P., Astigmatic laser mode converters and transfer of orbital angular momentum, Optics Communications, 96(3) (1993) 123-132.
  • [35] Zauderer E., Complex argument Hermite-Gaussian and Laguerre-Gaussian beams, J. Opt. Soc. Am. A., 3(4) (1986) 465-469.
  • [36] Gradshteyn I.S., Ryzhik I.M., Table of Integrals, Series and Products, 8th ed., California: Elsevier, (2015)
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Engineering Sciences
Authors

Ufuk Paralı 0000-0003-0088-2317

Publication Date June 30, 2021
Submission Date January 27, 2020
Acceptance Date May 20, 2021
Published in Issue Year 2021

Cite

APA Paralı, U. (2021). Computational analysis of optical trapping of transparent and reflecting micron-sized spherical particles. Cumhuriyet Science Journal, 42(2), 476-492. https://doi.org/10.17776/csj.680516