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Abstract  

In the ray-optics regime, we calculated the radial and axial force field on a micron-sized 
spherical particle in an optical levitation trap. The momentum change in the photon-stream 
path of tightly focused incident laser beam causes the calculated force field in the optical trap. 
The computational results for the force field are compared with the literature and a good 
agreement is obtained. Utilizing the benchmarked force field, the optical trapping dynamics 
of (i) a transparent spherical particle with continuous-wave 𝑇𝑇𝑇𝑇𝑇𝑇00 Gaussian beam and (ii) a 
reflecting spherical particle with continuous-wave 𝑇𝑇𝑇𝑇𝑇𝑇01

∗  Laguerre-Gaussian beam under 
various conditions are simulated in Matlab. 
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1. Introduction 

Trapping and precisely manipulating micron and sub-
micron scale objects without interfering with a 
physical attachment is an interesting technical 
challenge. In the early 1970s, Ashkin and colleagues 
have reported the first applicable observation of 
acceleration and trapping of particles by radiation 
forces [1-6]. The technique opened the door to the 
study of the dynamics of single suspended particles, 
molecules, biological cells, and water droplets held in 
an optical levitation trap and to completely isolate 
these objects from their immediate surroundings [7, 8]. 
Thus, using radiation forces obtained by tightly 
focusing laser beams has become a useful tool for 
trapping and manipulating micrometer-sized particles 
in many scientific areas such as chemistry, physics and 
biology [2,3,9-15]. There are three different 
approaches for deriving the theoretical expressions for 
radiation forces due to laser beam exposures; (i) the 
electromagnetic dipole model that calculates the 
radiation force for particles in the Rayleigh regime 
where the objects are much smaller than the 
wavelength of the laser beam, and (ii) the ray-optics 
approach which has been first studied by Ashkin and 
applicable to the objects larger than the wavelength of 
the laser beam used in optical levitation trap [2,7,16-
20]. Especially the single-beam gradient trap setups 
were originally designed for Rayleigh particles 
[2,5,21]. These setups are also named as optical 
tweezers which has been experimentally shown that 
they could be used for trapping and manipulating 

micron-sized biological particles such as living cells 
and organelles within living cells [2,3,6,22]. In 2018, 
Ashkin won the Nobel Prize for his contributions to the 
optical tweezers and their application to biological 
systems. (iii) The third approach for the mathematical 
definition of the radiation force is the Lorenz-Mie 
model which has been used for the objects with 
dimensions close to the wavelength of the tightly 
focused laser beam utilized in optical trap setup [23]. 
Recently, the studies on the optical levitation of sub-
micron particles are 

being focused on trapping by ultrashort laser pulses 
[24,25] high precision nano-g acceleration sensing 
[26,27] manipulation of the trapped sub-micron 
particles and applications in optomechanics [28,29].    

There are unique design requirements for an optical 
levitation trap setup. Especially regarding stability, 
loading of targets under vacuum and trapping of 
transparent or reflective targets, a computational tool 
requirement to help inform further development and 
experimental considerations motivate the work we 
present here. In this work, we focused on Ashkin’s 
approach of ray-optics model [1-6] and 
computationally analysed the optical trapping of 
transparent and reflecting micron-sized spherical 
particles. This paper gives the computational results of 
(i) optical trapping of a transparent spherical particle 
with continuous-wave 𝑇𝑇𝑇𝑇𝑇𝑇00 Gaussian beam, and (ii) 
optical trapping of a reflecting spherical particle with 
continuous-wave 𝑇𝑇𝑇𝑇𝑇𝑇01

∗  Laguerre-Gaussian beam 
under various conditions. Both the evolution of axial 
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and radial dynamics are calculated in Matlab utilizing 
Velocity Verlet integrator algorithm. 

 

The rest of this paper is organised as follows; Section 
2 gives the analytical model and the simulation results 
for optical trapping of transparent spherical particle 
with 𝑇𝑇𝑇𝑇𝑇𝑇00 Gaussian beam. The benchmarking 
process for the developed Matlab code is explained in 
this part. Section 3 describes the analytical model for 
optical trapping of reflecting spherical particle with 
𝑇𝑇𝑇𝑇𝑇𝑇01

∗  Laguerre-Gaussian beam and gives the 
simulation results. The conclusion and the proposed 
future work is explained in Section 4. In Appendix, the 
Matlab modules developed in this study are given. 

2. Optical Trapping of Transparent Micron-
sized Spherical Particle with 𝑻𝑻𝑻𝑻𝑻𝑻𝟎𝟎𝟎𝟎 Gaussian 
Beam 

In this study, the equations for the axial and radial force 
fields of the ray-optics model have been utilized from 
Gauthier et al. [7]. We calculated and simulated the 
force fields on a micron-sized transparent spherical 
particle due to 𝑇𝑇𝑇𝑇𝑇𝑇00 Gaussian beam exposure using 
Matlab. In Section 2.1, the results for the 
benchmarking of the developed Matlab code is given. 
Once the force fields are obtained correctly, using 
Velocity Verlet algorithm in Section 2.2, we simulated 
the evolution of the axial position, radial position and 
radial velocity of the particle trapped in 𝑇𝑇𝑇𝑇𝑇𝑇00 
Gaussian beam as shown in Figure 1 below.  

Due to the change in the momentum of the photon-
stream while passing through the transparent micron-
sized spherical particle, a net force occurs on the 
particle as shown in Figure 1a. Here, particle has an 
inital radial offset with respect to the center of the 
Gaussian beam. Under the exposure of this force, 
particle departs towards the centre of the Gaussian 
beam. Once it reaches the center of the beam, the 
transverse force diminishes and only the longitudinal 
force in the direction of the Gaussian beam remains 
(see Figure 1b). Here, the transverse direction is on the 
radial axis and the longitudinal direction is on the 
propagation direction of the beam which is assumed to 
be on the z-dimension (see Figure 1c). Due to the 
viscosity effect, the transparent spherical particle will 
have damped oscillation in the transverse direction at 
the vicinity of the center of the beam as depicted in 
Figure 1c. Here, the comparison for the trapping of 
transparent and reflecting particles are also shown in 
Figure 1c. The difference between the trapping 
dynamics of transparent and reflecting spherical 
particle is that; while trapping a transparent spherical 
with TEM00 mode is possible, for trapping reflecting 
spherical particle 𝑇𝑇𝑇𝑇𝑇𝑇01

∗  mode is needed. In order to 
trap a reflecting particle with 𝑇𝑇𝑇𝑇𝑇𝑇01

∗  mode, the particle 
must be located somewhere in the 2nd and the 3rd 
regions of the beam. In these regions, reflecting 
particle will have a damped oscillation just as similar 
to the transparent particle having a damped oscillation 
under TEM00 mode exposure as shown in Figure 1c.    
 

 
                                 (a) 

 
(b) 

 
                           (c) 

Figure 1. (a) Ray-optics approach of the photon-stream path incident upon the lower side of a transparent spherical particle with an 
arbitrarily given initial radial offset with respect to the center axis of the Gaussian beam. Here, ΔPr=0, ΔPr≠0, n1 and n2 denotes for the 
momentum change at r=0, momentum change at r≠0, ambient refractive index and particle refractive index, respectively. (b) Transparent 
spherical particle located in the center of a Gaussian beam [30]. (c) Comparison of trapping transparent spherical particle with TEM00 
Gaussian beam and trapping reflecting spherical particle with 𝑇𝑇𝑇𝑇𝑇𝑇01

∗  Laguerre-Gaussian beam. It is not possible to trap a reflecting 
particle with TEM00 mode. 
 

For the trapping simulations of the transparent 
spherical particle, we must explicitly define the 
intensity of the  𝑇𝑇𝑇𝑇𝑇𝑇00 Gaussian beam in the 
numerical model. It is defined as: 

  𝐼𝐼(𝜌𝜌, 𝑧𝑧) = 2𝑃𝑃
𝜋𝜋𝜋𝜋(𝑧𝑧)2 𝑒𝑒𝑒𝑒𝑒𝑒 �

−2𝜌𝜌2

𝜋𝜋(𝑧𝑧)2�        (1) 

where; (i) 𝜌𝜌 is the radial displacement of a point on the 
surface of the spherical particle (not the center of the 
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particle) (see Figures 2a and 2b). If the center of the 
spherical particle is displaced from the center of the 
beam by 𝑎𝑎�, then we can write the radial displacement 
(with respect to the global coordinate system) of a 
point on the sphere as �̅�𝑑. Therefore, the magnitude of 
the radial displacement is defined as 𝜌𝜌. In other words, 
𝜌𝜌 is the radial distance from the beam’s axis. From 
Figures 2a and 2b, we can write;  

�̅�𝑑 =  𝜌𝜌�̂�𝑑                                (2) 

where 𝜌𝜌 = ��̅�𝑑�. Here, �̅�𝑑 is the position of points on the 
surface of the spherical particle with respect to the 
global coordinate system. Thus looking at Figures 2a 
and 2b, the following can be written; 

𝑎𝑎� = 𝑎𝑎𝑥𝑥𝑎𝑎�𝑥𝑥 + 𝑎𝑎𝑦𝑦𝑎𝑎�𝑦𝑦 + 𝑎𝑎𝑧𝑧𝑎𝑎�𝑧𝑧                 (3) 

and 

𝑏𝑏� = 𝑒𝑒𝑎𝑎�𝑥𝑥 + 𝑦𝑦𝑎𝑎�𝑦𝑦 + 𝑧𝑧𝑎𝑎�𝑧𝑧            (4) 

where 𝑎𝑎� is the position of the center of the spherical 
particle with respect to the global coordinate system. 
Here, 𝑒𝑒 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅∅ and 𝑦𝑦 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅∅. Using 𝑎𝑎� 

and 𝑏𝑏�, we can write 

�̅�𝑑 = 𝑎𝑎� + 𝑏𝑏�.            (5) 

Assume 𝑎𝑎𝑦𝑦 = 0 and 𝑎𝑎𝑧𝑧 = 0. Thus, 

�̅�𝑑 = (𝑎𝑎𝑥𝑥 + 𝑒𝑒)𝑎𝑎�𝑥𝑥 + 𝑦𝑦𝑎𝑎�𝑦𝑦                (6) 

and 

𝜌𝜌 = ��̅�𝑑� → 𝜌𝜌 =  ��̅�𝑑�̅�𝑑,                (7) 

𝜌𝜌 = (𝑎𝑎𝑥𝑥2 + 2𝑎𝑎𝑥𝑥𝑒𝑒 + 𝑒𝑒2 + 𝑦𝑦2)1 2� .             (8) 

Here, we can define 𝜌𝜌 as:  

𝜌𝜌 = [𝑎𝑎𝑥𝑥2 + 2𝑎𝑎𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅∅+ (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅∅)2 +
         (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅∅)2]1 2�                                              (9) 

where 𝑅𝑅 ∈ �0,𝜋𝜋 2� � and ∅ ∈ [0,2𝜋𝜋].

 

 

 

 
(a) 

 
(b) 

Figure 2. (a) 2-dimensional view of the spherical particle from the above. Here, the propagation of the Gaussian beam is at 𝑎𝑎�𝑧𝑧 direction. 
(b) 3-dimensional view of a spherical particle under the exposure of a TEM00 Gaussian beam. Particle has an arbitrary initial radial offset 
with respect to the center axis of the beam. Here, ∅ is the polar angle, 𝑅𝑅 is the incident angle and |𝑎𝑎�| is the radial distance between the 
center axis of the beam and center axis of the sphere [8]. 
 
(ii) 𝑧𝑧 is the vertical displacement of a point on the 
surface of the spherical particle (not the center of the 
particle). In other words, it is the distance measured 
along the beam’s direction of propagation with 𝑧𝑧 = 0 
located at the minimum waist; 

𝑧𝑧 = 𝑎𝑎𝑧𝑧 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅                             (10) 

(iii) 𝑃𝑃 is the total power of the laser beam and 𝑤𝑤(𝑧𝑧) is 
the beam width defined as: 

𝑤𝑤(𝑧𝑧) = 𝑤𝑤0 �1 + � 𝑧𝑧
𝑧𝑧0
�
2
�
1/2

                  (11) 

where 𝑤𝑤0 is the beam waist and 𝑧𝑧0 is the Rayleigh 

range defined as 𝑧𝑧0 = 𝜋𝜋𝑤𝑤02
𝜆𝜆0
�  where 𝜆𝜆0 is the 

wavelength of the laser beam. 

 
2.1. Benchmarking the Matlab code by 
comparing force plots 

There is a vast amount of literature on optical trapping 
codes containing force plots of the optical gradient 
forces. As mentioned above, in this study, the 
equations for the axial and radial force fields of the ray-
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optics model have been utilized from Gauthier et al. 
[7]. Thus, in order to validate our optical force modules 
of the Matlab code are functioning correctly, the 
Matlab outputs of our code are compared with the 
results of [7]. In the benchmarking simulations, three 
cases were tested and compared in which the radius of 
the spherical particle is (i) smaller than the beam waist, 

(ii) equal to the beam waist and (iii) larger than the 
beam waist as shown in Figure 3 below. For a correct 
comparison of the results in the benchmarking process, 
the physical parameters of [7] are utilized as listed in 
Table 1 below. In the next section, dynamic viscosity, 
refractive index of the spherical particle, wavelength of 
the beam and the laser power are changed. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. (a) Radius of spherical particle is smaller than laser beam waist (R<w0). (b) Radius of spherical particle is equal to laser beam 
waist (R=w0). (c) Radius of spherical particle is larger than laser beam waist (R>w0). 
Table 1. Values of the parameters utilized from Gauthier et al. [7] for code benchmarking calculations. 

     Input Parameters Value 
Initial radial offset (m) 0 

Initial axial offset (m) 0 
(for Figures 4-b, 4-d and 4-f) 

Initial axial offset (m) (0-25-50-100)x10-6 
(for Figures 4-h and 4-j) 

Particle radius (m) (1.5-2-2.5)x10-6 

Beam waist (m) – FWHM 2x10-6 

Laser power (mW) 20 
Density of the particle (kg/m3) 1197.2 

Medium dynamic viscosity (kgm-1s-1) 1.8x10-7 (=18 µPa.sec)  
Laser wavelength (nm) 514 
Ambient refractive index – n1 1.333 
Particle rrefractive index – n2 1.5568 

 
Looking at Figure 4 below, a good agreement is seen 
between the force curves acting as a sanity check 
against our Matlab code. In the Appendix, the related 

Matlab modules implemented in the benchmarking 
calculations are provided.

 
(a) 

 
(b) 
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(c) 

 

 
(d) 

 
(e) 

 
(f) 

 

 
(g) 

 

 
(h) 
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(i) 

 
(j) 

Figure 4. (a) Evolution of axial force with axial distance from beam waist for R=1.5µm (radius of transparent spherical particle) and 
w0=2µm (laser beam waist) [7]. (b) Corresponding Matlab output of our code for Fig. 3-a (R=1.5µm, w0=2µm). (c) Evolution of axial 
force with axial distance from beam waist for R=2µm and w0=2µm [7]. (d) Corresponding Matlab output of our code for Fig. 3-c (R=2µm, 
w0=2µm). (e) Evolution of axial force with axial distance from beam waist for R=8.5µm and w0=2µm [7]. (f) Corresponding Matlab 
output of our code for Fig. 3-e (R=8.5µm, w0=2µm). (g) Evolution of radial force with radial distance from beam axis for R=1.5µm and 
w0=2µm [7]. (h) Corresponding Matlab output of our code for Fig. 3-g (R=1.5µm, w0=2µm). (i) Evolution of radial force with radial 
distance from beam axis for R=2µm and w0=2µm [7]. (j) Corresponding Matlab output of our code for Fig. 3-i (R=2µm, w0=2µm). 
 
 

2.2.   Simulation results for optical trapping of 
transparent spherical micro-particle 

Once the credibility of the code was established 
proving the force fields are being calculated properly, 
as the next step we move forward to investigate the 
dynamics of the transparent spherical particle under 
TEM00 Gaussian beam exposure. Thus, in order to 
understand the evolution of the axial and radial 
dynamics of the particle in the optical trap, we utilized 
the Velocity Verlet (VV) algortihm in side the code. It 
is a popular integrator giving pricesly the velocity and 
the position of the particle at the same time t in a three-
stage calculation [31]: 

𝑉𝑉 �𝑡𝑡0 + Δ𝑡𝑡
2
� = 𝑉𝑉(𝑡𝑡0) + Δ𝑡𝑡

2
𝐹𝐹(𝑟𝑟(𝑡𝑡0),𝑡𝑡0)

𝑚𝑚
                  (12) 

𝑟𝑟(𝑡𝑡0 + Δ𝑡𝑡) = 𝑟𝑟(𝑡𝑡0) + Δ𝑡𝑡𝑉𝑉 �𝑡𝑡0 + Δ𝑡𝑡
2
�                      (13) 

𝑉𝑉(𝑡𝑡0 + Δ𝑡𝑡) = 𝑉𝑉 �𝑡𝑡0 + Δ𝑡𝑡
2
�+ Δ𝑡𝑡

2
𝐹𝐹(𝑟𝑟(𝑡𝑡0+Δ𝑡𝑡),𝑡𝑡0+Δ𝑡𝑡)

𝑚𝑚
     (14) 

Here, 𝐹𝐹 is the force field (Lorentz force) on the 
particle. It must be noted that 𝐹𝐹 is being calculated 
twice in the VV algorithm. The first evaluation of 𝐹𝐹 is 
at the inital time and position of the particle (see Eq. 
12). The second evaluation of 𝐹𝐹 is at the next position 
of the particle after the time-step Δ𝑡𝑡 (see Eq. 14) [31]. 

In the simulations, we utilized the following values for 
the given parameters in Table 2 below: 

Table 2. Values of the parameters used in the simulations of 
optical trapping dynamics of transparent spherical particle. 

Input Parameters Value 
Initial radial offset (m) 1x10-6 

Initial axial offset (m) -5x10-3 

Initial axial velocity (ms-1) 5.0 
Particle radius (m) 5x10-6 

Beam waist (m) – FWHM 4x10-6 

Laser power (mW) 200 
Density of the particle (kg/m3) 2500 
Medium dynamic viscosity (kgm-1s-1) 1.82x10-6 

Laser wavelength (nm) 532 
Simulation step size (sec) – Δt 5x10-5 

Ambient refractive index – n1 1.0 
Particle refractive index – n2 1.52 

The simulation results for the evolution of the axial and 
radial trajectories of the transparent spherical particle 
in the optical trap are given in Figure 5 below. In the 
Appendix, the related Matlab modules implemented 
for these simulations are provided. For a proper 
experimental design of an optical trap, it is vital to 
understand the axial and radial dynamics of a particle 
located in the optical trap. Thus having a 
computational tool providing the evolution of particle 
trajectory is extremely beneficial for the 
experimentalists working in this research field. 
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(a) (b) (c) 

Figure 5. (a) Radial vs axial trajectory of the particle under TEM00 beam exposure in the optical trap. (b) Temporal evolution of the 
damped oscillation of the particle at the vicinity of the center axis of the TEM00 laser beam.  (c) Temporal evolution of the radial velocity 
of the particle in the optical trap. 
 
3. Optıcal Trapping Of A Reflecting Particle Under 
𝑻𝑻𝑻𝑻𝑻𝑻𝟎𝟎𝟎𝟎

∗  Laguerre-Gaussıan Beam 

As explained in Section 2, different than trapping a 
transparent particle with a TEM00 beam, we need 
𝑇𝑇𝑇𝑇𝑇𝑇01

∗  Laguerre-Gaussian beam for trapping a 

reflecting spherical particle. In this section, first the 
derivation of the intensity expression of Laguerre-
Gaussian donut beam in terms of total beam power is 
discussed. Laguerre-Gaussian beams are the higher-
order Gaussian beams in cylindrical coordinates 
[32,33]:

𝑇𝑇𝑝𝑝,𝑙𝑙(𝜌𝜌,𝑅𝑅, 𝑧𝑧) = 𝐴𝐴𝑝𝑝,𝑙𝑙

𝑤𝑤(𝑧𝑧)
(√2𝜌𝜌
𝑤𝑤(𝑧𝑧)

)𝑙𝑙𝐿𝐿𝑝𝑝𝑙𝑙 �
2𝜌𝜌2

𝑤𝑤(𝑧𝑧)
� exp ( −𝜌𝜌2

𝑤𝑤(𝑧𝑧)2)exp ( 𝑖𝑖𝑖𝑖𝜌𝜌
2

2𝑅𝑅(𝑧𝑧))exp (𝑅𝑅[𝑙𝑙𝑅𝑅 − 𝜑𝜑(𝑧𝑧)])                   (15) 

where 𝜌𝜌 = (𝑒𝑒2 + 𝑦𝑦2)1 2�  , 𝑅𝑅 = 𝑡𝑡𝑎𝑎𝑅𝑅−1�𝑦𝑦 𝑒𝑒� �, 𝑤𝑤(𝑧𝑧) is 
the beam width defined same as the Gaussian beam 
width, 𝐿𝐿𝑝𝑝𝑙𝑙  is the associated Laguerre polynomial of 
radial order 𝑒𝑒 and azimuthal order 𝑙𝑙 and 𝐴𝐴𝑝𝑝,𝑙𝑙 is the 
constant term for normalizing the beam equation [34]: 

𝐴𝐴𝑝𝑝,𝑙𝑙 = 𝑒𝑒! � 2
𝜋𝜋𝑝𝑝!(|𝑙𝑙|+𝑝𝑝)!

�
1
2� .           (16) 

Here, if 𝑙𝑙 ≠ 0 and 𝑒𝑒 = 0, then the beams have a 
characteristic single-ringed donut. The radius of donut 
is proportional to 𝑙𝑙1 2� . Thus, 𝐿𝐿𝐿𝐿01|(𝑝𝑝=0,𝑙𝑙=1) = 𝑇𝑇𝑇𝑇𝑇𝑇01

∗  
[33-35]. For 𝐿𝐿𝐿𝐿𝑝𝑝𝑙𝑙  mode, the amplitude expression can 
be defined from Eq. 15 as below [32,33,35]: 

𝑇𝑇𝑅𝑅𝑝𝑝,𝑙𝑙(𝜌𝜌,𝑅𝑅, 𝑧𝑧) = 𝐴𝐴𝑝𝑝,𝑙𝑙

𝑤𝑤(𝑧𝑧)
(√2𝜌𝜌
𝑤𝑤(𝑧𝑧)

)𝑙𝑙𝐿𝐿𝑝𝑝𝑙𝑙 �
2𝜌𝜌2

𝑤𝑤(𝑧𝑧)
� exp ( −𝜌𝜌2

𝑤𝑤(𝑧𝑧)2)  (17) 

Using Eq. 17, the intensity expression of the donut 
mode can be derived [35]: 

𝐼𝐼𝐿𝐿𝐿𝐿01 = 𝑐𝑐𝜀𝜀𝑜𝑜
2
�𝑇𝑇𝑅𝑅𝑝𝑝=0,𝑙𝑙=1�

2,           (18) 

𝐼𝐼𝐿𝐿𝐿𝐿01 = 𝑐𝑐𝜀𝜀𝑜𝑜
2
�𝐴𝐴𝑝𝑝=0,𝑙𝑙=1

𝑤𝑤(𝑧𝑧)
(√2𝜌𝜌
𝑤𝑤(𝑧𝑧)

)1𝐿𝐿01 �
2𝜌𝜌2

𝑤𝑤(𝑧𝑧)
� exp ( −𝜌𝜌2

𝑤𝑤(𝑧𝑧)2)�
2
(19) 

where 

𝐴𝐴𝑝𝑝=0,𝑙𝑙=1 = �𝑒𝑒! � 2
𝜋𝜋𝑝𝑝!(|𝑙𝑙|+𝑝𝑝)!

�
1
2� �
𝑝𝑝=0,𝑙𝑙=1

,         (20) 

𝐴𝐴𝑝𝑝=0,𝑙𝑙=1 = �2
𝜋𝜋
 ,                        (21) 

and 

 𝐿𝐿01 �
2𝜌𝜌2

𝑤𝑤(𝑧𝑧)
� = 1 where 𝐿𝐿0𝑙𝑙 (𝑒𝑒)=1.                   (22) 

Using Eqs. 21 and 22 in Eq. 19, we can get: 

𝐼𝐼𝐿𝐿𝐿𝐿01 = 𝑐𝑐𝜀𝜀𝑜𝑜
2
�
�2 𝜋𝜋�

𝑤𝑤(𝑧𝑧)
(√2𝜌𝜌
𝑤𝑤(𝑧𝑧)

)exp ( −𝜌𝜌2

𝑤𝑤(𝑧𝑧)2)�

2

,            (23) 

 

𝐼𝐼𝐿𝐿𝐿𝐿01 = (2𝑐𝑐𝜀𝜀0) � 1
𝜋𝜋𝑤𝑤(𝑧𝑧)4

𝜌𝜌2𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝜌𝜌
2

𝑤𝑤(𝑧𝑧)2��.         (24) 

The total optical power carried by the beam is the 
integral of the optical intensity over a transverse plane 
as 𝑃𝑃 = ∫ 𝐼𝐼(𝜌𝜌, 𝑧𝑧)∞

0 2𝜋𝜋𝜌𝜌𝑑𝑑𝜌𝜌 [34,35]. 

 

Thus using Eq. 24, the total power can be written as 
[33-35]:  

 

𝑃𝑃 = 2𝑐𝑐𝜀𝜀0
𝜋𝜋𝑤𝑤(𝑧𝑧)4 ∫ 𝜌𝜌2𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝜌𝜌

2

𝑤𝑤(𝑧𝑧)2� 2𝜋𝜋𝜌𝜌𝑑𝑑𝜌𝜌∞
0 ,      (25) 

𝑃𝑃 = 4𝑐𝑐𝜀𝜀0
𝑤𝑤(𝑧𝑧)4 ∫ 𝜌𝜌3𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝜌𝜌

2

𝑤𝑤(𝑧𝑧)2� 𝑑𝑑𝜌𝜌
∞
0 .               (26) 
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The definition of the integral term in Eq. 26 is defined 
as [36]: 

 

∫ 𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒(−𝑎𝑎𝑒𝑒2)𝑑𝑑𝑒𝑒 =

⎩
⎪⎪
⎨

⎪⎪
⎧ (𝑅𝑅) 

1
2
Γ �𝑛𝑛+1

2
�

𝑎𝑎𝑛𝑛+1 2�
� ; (𝑅𝑅 > −1,𝑎𝑎 > 0)

(𝑅𝑅𝑅𝑅) (2𝑖𝑖−1)‼
2𝑘𝑘+1𝑎𝑎𝑘𝑘 �

𝜋𝜋
𝑎𝑎

; (𝑅𝑅 = 2𝑘𝑘,𝑘𝑘 𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑡𝑡𝑒𝑒𝑖𝑖𝑒𝑒𝑟𝑟,𝑎𝑎 > 0,

                           ‼ 𝑅𝑅𝑅𝑅 𝑑𝑑𝑅𝑅𝑑𝑑𝑏𝑏𝑙𝑙𝑒𝑒 𝑓𝑓𝑎𝑎𝑐𝑐𝑡𝑡𝑅𝑅𝑟𝑟𝑅𝑅𝑎𝑎𝑙𝑙) 
(𝑅𝑅𝑅𝑅𝑅𝑅) 𝑖𝑖!

2𝑎𝑎𝑘𝑘+1
; (𝑅𝑅 = 2𝑘𝑘 + 1,𝑘𝑘 𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑡𝑡𝑒𝑒𝑖𝑖𝑒𝑒𝑟𝑟,𝑎𝑎 > 0)

∞
0                      (27) 

 

The integral term in Eq. 26 (𝑅𝑅 = 3, 𝑘𝑘 = 1 and 𝑎𝑎 =
2

𝑤𝑤(𝑧𝑧)2 > 0) satisfies both of the conditions for (𝑅𝑅) and 
(𝑅𝑅𝑅𝑅𝑅𝑅). For the value of the integral term, we found the 
same results: 

(𝑅𝑅)     
1
2Γ(2)

� 2
𝑤𝑤(𝑧𝑧)2�

2 = 𝑤𝑤(𝑧𝑧)4

8
,                                  (28) 

and 

(𝑅𝑅𝑅𝑅𝑅𝑅)     1!

2� 2
𝑤𝑤(𝑧𝑧)2�

2 = 𝑤𝑤(𝑧𝑧)4

8
 .                       (29) 

This result can be used in Eq. 26 for defining P : 

𝑃𝑃 = 4𝑐𝑐𝜀𝜀0
𝑤𝑤(𝑧𝑧)4

 𝑤𝑤(𝑧𝑧)4

8
,                                   (30) 

𝑃𝑃 = 𝑐𝑐𝜀𝜀0
2

.                         (31) 

Using Eq. 31 in Eq. 24, the intensity expression of the 
donut mode in terms of power can be written as: 

𝐼𝐼𝐿𝐿𝐿𝐿01 = 𝑇𝑇𝑇𝑇𝑇𝑇01
∗ = 4𝑃𝑃

𝜋𝜋𝑤𝑤(𝑧𝑧)4
𝜌𝜌2𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝜌𝜌

2

𝑤𝑤(𝑧𝑧)2�.         (32) 

 

 

3.1. Simulation results for optical trapping of 
reflecting spherical micro-particle 

Utilizing Eq. 32, the axial optical trapping dynamics of 
micron-sized reflecting spherical particles with various 
radius values and with various initial axial positions are 
simulated. The following parameters in Table 3 are 
used in the simulations. The results are depicted in 
Figures 6 and 7 below.  
Table 3. Values of the parameters used in the simulations 
of optical trapping dynamics of reflecting spherical 
particle. 
Input Parameters Value 
Initial radial offset (m) 0 

Initial axial offset (m) (200 and -50)x10-6 

Initial axial velocity (m/sec) 0 
Particle radius (m) (2 - 2.5 - 3.5)x10-6 

Beam waist (m) – FWHM 3x10-6 

Laser power (mW) 600 
Density of the particle (kg/m3) 1197.2 
Medium dynamic viscosity 
(kgm-1sec-1) 

1.82x10-5 

Laser wavelength (nm) 532 
Simulation step size (sec) – Δt 1x10-5 
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Figure 6. The axial stabilization of the particles with different radius (R) values and initial axial positions (Zinitial). 
 

 
Figure 7. The axial velocity of the particles with different radius (R) values and initial axial positions (Zinitial). 
 
4. Conclusion and Future Work 

The momentum change in the photon-stream path of 
incident laser beam causes radiation force field. Using 
this radiation force field for trapping and manipulating 
micron-sized particles by tightly focusing laser beams 
in an optical trap has become a useful tool for many 
recent research areas. Due to the unique design 
requirements in an optical trap experiment, a 
computational tool is required for a better setup 
development. In this work, using Ashkin’s approach of 

ray-optics model, we computationally analysed the 
optical levitation trapping of transparent and reflecting 
micron-sized spherical particles. We calculated the 
radiation force field using continuous-wave 𝑇𝑇𝑇𝑇𝑇𝑇00 
Gaussian and 𝑇𝑇𝑇𝑇𝑇𝑇01

∗  Laguerre-Gaussian laser beams 
for the optical trapping of transparent and reflecting 
particles, respectively. Utilizing Velocity Verlet 
algorithm, evolution of optical levitation trap dynamics 
are analysed in Matlab. As a future challenging work, 
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we aim to focus on analytical modelling and simulation 
of optical trapping of micron-sized metamaterials 
having negative index of refraction. 

Appendix 
A.1.   Matlab code for the benchmarking process 
and optical trapping simulations of the transparent 
spherical micro-particle 

This section gives the Matlab functions developed for 
both benchmarking process and optical trap 

simulations. Figure 8 below gives the geometric model 
of the photon-stream path of the incident beam on a 
transparent spherical particle where the refractive 
index of the particle is greater than the refractive index 
of the ambient. During calculating the force field on 
the particle, we took into consideration the momentum 
change due to the 1st reflected & transmitted beams and 
2nd reflected & transmitted beams in this ray-optics 
model.

 

 

 
Figure 8. Reflected and transmitted ray-optics model of a transparent spherical particle under the exposure of a laser beam. The force 
due to the momentum change with respect to the 1st reflected & transmitted beams and 2nd reflected & transmitted beams are calculated 
in the given Matlab modules below. Using the calculated force-fields, the trap dynamics of the particle is simulated.   
function f=forceAxial() 
% Written by Ufuk Paralı 
% This function calculates (within the geometrical 
optics regime) the total axial force  
% on a transparent spherical particle in the optical trap 
due to the 1st reflected and       
% 1st transmitted photon-stream paths and 2nd 
reflected and 2nd transmitted photon-    
% stream paths of a continuous-wave TEM00 
Gaussian laser beam. 
global az 
global ax 
global R 
global W0 
global P 
global n0 
global ns 
global lambda0 
ax=0; % Initial radial offset of particle from center axis 
of laser beam 
R=2e-6; % Radius of spherical particle 
W0=1.5e-6; % Beam waist 
P=20e-3; % Laser power 
n0=1.333; % Refractive index of ambient 
ns=1.5468; % Refractive index of transparent spherical 
particle 

lambda0=514e-9; % Laser wavelength - m 
density=1000; % Particle density - kg/m^3 
m=density*(4/3)*pi*R^3; % mass of the spherical 
particle - kg 
g=9.8; % m/s^2 
ForceWeight=m*g; 
counter=1; % counter initialization 
 
for az=0:1e-5:5e-3 
    posAxial(counter)=az; % Axial position of the 
particle in the trap 
    % Axial force due to the 1st reflected photon-stream 
path 
    
ForceOneRZ=dblquad(@forceOneReflectedZ,0,2*pi,
0,pi/2);  
 
    % Axial force due to the 1st transmitted photon-
stream path     
    
ForceOneTZ=dblquad(@forceOneTransmittedZ,0,2*
pi,0,pi/2);  
 
    % Axial force due to the 2nd reflected photon-
stream path     
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ForceTwoRZ=dblquad(@forceTwoReflectedZ,0,2*pi
,0,pi/2); 
  
    % Axial force due to 2nd transmitted photon-stream 
path 
    
ForceTwoTZ=dblquad(@forceTwoTransmittedZ,0,2*
pi,0,pi/2);  
 
    % Total axial force on the particle 
    
ForceAxial(counter)=ForceOneRZ+ForceOneTZ+For
ceTwoRZ+ForceTwoTZ-   
    ForceWeight;  
    counter=counter+1; 
end 
plot(posAxial,ForceAxial) 
grid on 
return 
 
function f=forceRadial() 
% Written by Ufuk Paralı 
% This function calculates (within the geometrical 
optics regime) the total radial force  
% on a transparent spherical particle in the optical trap 
due to the 1st reflected and 
% 1st transmitted photon-stream paths and 2nd 
reflected and 2nd transmitted photon-    
% stream paths of a continuous-wave TEM00 
Gaussian laser beam. 
global az 
global ax 
global R 
global W0 
global P 
global n0 
global ns 
global lambda0 
az=0; % Initial axial offset of the particle in the trap 
R=2e-6; % Radius of spherical particle 
W0=1.5e-6; % Beam waist 
P=20e-3; % Laser power 
n0=1.333; % Refractive index of ambient 
ns=1.5468; % Refractive index of transparent spherical 
particle 
lambda0=514e-9; % Laser wavelength - m 
counter=1; % counter initialization 
for ax=0:1e-7:10e-6; 
    posRadial(counter)=ax; % Radial position of the 
particle in the trap 
    % Radial force due to the 1st reflected photon-
stream path    
    ForceOneRR=-
dblquad(@forceOneReflectedR,0,2*pi,0,pi/2); 

  
    % Radial force due to the 1st transmitted photon-
stream path 
    ForceOneTR=-
dblquad(@forceOneTransmittedR,0,2*pi,0,pi/2); 
  
    % Radial force due to the 2nd reflected photon-
stream path 
    ForceTwoRR=-
dblquad(@forceTwoReflectedR,0,2*pi,0,pi/2); 
  
    % Radial force due to the 2nd transmitted photon-
stream path 
    ForceTwoTR=-
dblquad(@forceTwoTransmittedR,0,2*pi,0,pi/2); 
  
    % Total radial force on the particle 
    
ForceRadial(counter)=ForceOneRR+ForceOneTR+F
orceTwoRR+ForceTwoTR;  
    counter=counter+1; 
end 
plot(posRadial,ForceRadial) 
grid on 
return 
function f=opticalTrapDynamics() 
% Written by Ufuk Paralı 
% This function calculates (within the geometrical 
optics regime) the optical trap  
% dynamics of a transparent spherical particle due to 
the 1st reflected and 
% 1st transmitted photon-stream paths and 2nd 
reflected and 2nd transmitted photon- 
% stream paths of a continuous-wave TEM00 
Gaussian laser beam.  
% (see Figure 5 in the text) 
global az 
global ax 
global R 
global W0 
global P 
global n0 
global ns 
global lambda0 
az=-5e-3; % Initial axial position of particle 
ax=1e-6; % Initial radial offset of particle from center 
axis of laser beam 
R=5e-6; % Radius of transparent spherical particle 
W0=4e-6; % Beam waist 
P=200e-3; % Laser power 
n0=1.0; % Refractive index of ambient 
ns=1.52; % Refractive index of transparent spherical 
particle 
lambda0=532e-9; % Laser wavelength - m 
velAxialinit=5; % Initial axial velocity - m/sec 
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velRadialinit=0; % Initial radial velocity - m/sec 
finaltime=0.0005; % Simulation duration - sec 
dt=0.00005; % Simulation time step 
density=2500; % Particle density - kg/m^3 
m=density*(4/3)*pi*R^3; % mass of the spherical 
particle - kg 
g=9.8; % m/s^2 
ForceWeight=m*g; 
eta=1.82e-6; % Medium dynamic viscosity – kg/m.sec 
drag=6*3.14*eta; % drag due to viscosity 
k=drag*R; % Spring constant due to drag 
timeArrayCommon=zeros(1,(finaltime/dt)+2); 
accelerationArrayAxial=zeros(1,(finaltime/dt)+2); 
positionArrayAxial=zeros(1,(finaltime/dt)+2); 
velocityArrayAxial=zeros(1,(finaltime/dt)+2); 
accelerationArrayRadial=zeros(1,(finaltime/dt)+2); 
positionArrayRadial=zeros(1,(finaltime/dt)+2); 
velocityArrayRadial=zeros(1,(finaltime/dt)+2); 
counterCommon=1; % counter initialization 
positionArrayAxial(counterCommon)=az; 
positionArrayRadial(counterCommon)=ax; 
velocityArrayAxial(counterCommon)=velAxialinit; 
velocityArrayRadial(counterCommon)=velRadialinit; 
tic; % Simulation start time 
for timeCommon=0:dt:finaltime 
    timeCommon 
    
timeArrayCommon(counterCommon)=timeCommon; 
    
ForceOneRZ=dblquad(@forceOneReflectedZ,0,2*pi,
0,pi/2); 
    
ForceOneTZ=dblquad(@forceOneTransmittedZ,0,2*
pi,0,pi/2); 
    
ForceTwoRZ=dblquad(@forceTwoReflectedZ,0,2*pi
,0,pi/2); 
    
ForceTwoTZ=dblquad(@forceTwoTransmittedZ,0,2*
pi,0,pi/2); 
    
ForceOneRR=dblquad(@forceOneReflectedR,0,2*pi,
0,pi/2); 
    
ForceOneTR=dblquad(@forceOneTransmittedR,0,2*
pi,0,pi/2); 
    
ForceTwoRR=dblquad(@forceTwoReflectedR,0,2*pi
,0,pi/2); 
    
ForceTwoTR=dblquad(@forceTwoTransmittedR,0,2
*pi,0,pi/2); 
    ForceDragAxial=-
k*velocityArrayAxial(counterCommon); %Dragforce 
in axial direction 

    ForceDragRadial=-
k*velocityArrayRadial(counterCommon);%Dragforce 
radial direction 
    
ForceAxialNet=ForceOneRZ+ForceOneTZ+ForceTw
oRZ+ForceTwoTZ+ForceDragAxial-   
    ForceWeight; 
 
    if (positionArrayRadial(counterCommon)==0) 
           ForceRadialNet=ForceDragRadial; 
    else 
           
ForceRadialNet=ForceOneRR+ForceOneTR+ForceT
woRR+ForceTwoTR+ 
           ForceDragRadial;        
    end 
    % Beginning of Velocity Verlet Algorithm  
    
accelerationArrayAxial(counterCommon)=ForceAxia
lNet/m; 
    
accelerationArrayRadial(counterCommon)=ForceRad
ialNet/m; 
 
    
VelAxialHalfTimeStep=velocityArrayAxial(counterC
ommon)+0.5* 
    accelerationArrayAxial(counterCommon)*dt; 
 
    
positionArrayAxial(counterCommon+1)=positionArr
ayAxial(counterCommon)+ 
    VelAxialHalfTimeStep*dt; 
 
    
VelRadialHalfTimeStep=velocityArrayRadial(counte
rCommon)+0.5* 
    accelerationArrayRadial(counterCommon)*dt; 
 
    
positionArrayRadial(counterCommon+1)=positionAr
rayRadial(counterCommon)+ 
    1*VelRadialHalfTimeStep*dt; 
     
    az=positionArrayAxial(counterCommon+1); 
    ax=positionArrayRadial(counterCommon+1); 
    
ForceOneRZ=dblquad(@forceOneReflectedZ,0,2*pi,
0,pi/2); 
    
ForceOneTZ=dblquad(@forceOneTransmittedZ,0,2*
pi,0,pi/2); 
    
ForceTwoRZ=dblquad(@forceTwoReflectedZ,0,2*pi
,0,pi/2); 
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ForceTwoTZ=dblquad(@forceTwoTransmittedZ,0,2*
pi,0,pi/2); 
    
ForceOneRR=dblquad(@forceOneReflectedR,0,2*pi,
0,pi/2); 
    
ForceOneTR=dblquad(@forceOneTransmittedR,0,2*
pi,0,pi/2); 
    
ForceTwoRR=dblquad(@forceTwoReflectedR,0,2*pi
,0,pi/2); 
    
ForceTwoTR=dblquad(@forceTwoTransmittedR,0,2
*pi,0,pi/2);   
    ForceDragAxial=-k*VelAxialHalfTimeStep; 
    ForceDragRadial=-k*VelRadialHalfTimeStep; 
     
    
ForceAxialNet=ForceOneRZ+ForceOneTZ+ForceTw
oRZ+ForceTwoTZ+ 
    ForceDragAxial-ForceWeight; 
 
        if (positionArrayRadial(counterCommon+1)==0) 
            ForceRadialNet=ForceDragRadial; 
        else 
            
ForceRadialNet=ForceOneRR+ForceOneTR+ForceT
woRR+ForceTwoTR+ 
            ForceDragRadial;        
        end 
    
accelerationArrayAxial(counterCommon+1)=ForceA
xialNet/m; 
    
accelerationArrayRadial(counterCommon+1)=ForceR
adialNet/m;  
 
    
velocityArrayAxial(counterCommon+1)=VelAxialHa
lfTimeStep+0.5* 
    accelerationArrayAxial(counterCommon+1)*dt; 
 
    
velocityArrayRadial(counterCommon+1)=VelRadial
HalfTimeStep+0.5* 
    accelerationArrayRadial(counterCommon+1)*dt; 
    % End of Velocity Verlet Algorithm 
    counterCommon=counterCommon+1; 
end 
toc; % Simulation end time 
timeArrayCommon(counterCommon)=timeCommon
+dt; 
 

figure,plot(positionArrayRadial,positionArrayAxial),
xlabel('RadialPosition (m)'), 
ylabel('Axial Position (m)'),title('Axial Position, z (m) 
vs Radial Position, r (m)'); 
 
figure,plot(timeArrayCommon,positionArrayRadial),
xlabel('Time (sec)'), 
ylabel('Radial Position (m)'),title('Radial Position, r 
(m)'); 
 
figure,plot(timeArrayCommon,velocityArrayRadial),
xlabel('Time (sec)'), 
ylabel('Radial Velocity (m/sec)'),title('Radial Velocity, 
Vr (m/sec)'); 
return 
 
function Ints=Intensity(ro,z) 
% Written by Ufuk Paralı 
% This function calculates the intensity of TEM00 
Gaussian beam. 
global W0 
global P 
global lambda0 
z0=(pi*W0*W0)/lambda0; % Rayleigh range 
Wz2=(W0^2)*(1+((z)/z0).^2); % Square of beam 
width – (square of Eq. 11 in the text) 
Ints=(2*P./(pi*(Wz2))).*exp(-2*(ro.^2)./(Wz2)); % 
Intensity – see Eq. 1 in the text 
return 
 
function r1square=refCoefSquare(theta1,theta2) 
% Written by Ufuk Paralı 
% This function calculates the power reflectance 
coefficient 
% See Eq. 9 of Gauthier et al. [7]. 
global n0 
global ns 
global lambda0 
r1square=(((n0*ns)^2*((cos(theta1)).^2-
(cos(theta2)).^2).^2))/((n0*ns)*((cos(theta1)).^2+ 
(cos(theta2)).^2)+((n0^2)+(ns^2))*(cos(theta1).*cos(t
heta2))).^2; 
return 
 
function ro2=rho2(phi,theta1,ax) 
% Written by Ufuk Paralı 
% This function calculates the radial distance (𝜌𝜌) of a 
point  
% on the surface of the spherical particle from the 
beam's axis. 
global R 
% Radial distance – see Eq. 9 in the text 
ro2=((ax)^2+(2*(ax)*R*sin(theta1).*cos(phi))+(R*si
n(theta1)).^2+(R*sin(theta1)).^2).^(0.5);  
return 
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function s=Snell(T1) 
% Written by Ufuk Paralı 
% Snell function 
global n0 
global ns 
s=asin((n0/ns)*sin(T1)); 
return 
 
function F1rz=forceOneReflectedZ(phi,theta1) 
% Written by Ufuk Paralı 
% This function calculates the axial force due to the 1st 
reflected  
% photon-stream path (see Figure 8) given by Eq. 22 
of Gauthier et al. [7]. 
global az 
global ax 
global R 
global n0 
global ns 
global lambda0 
c=3e8; 
theta2=Snell(theta1); 
rhoTheta1Phi=rho2(phi,theta1,ax); 
z=az-R*cos(theta1); 
F1rz=(0.5/c)*n0*(1+cos(2*theta1)).*Intensity(rhoThe
ta1Phi,z).*refCoefSquare(theta1,theta2)*(R^2).*sin(2
*theta1); 
return 
 
function F1tz=forceOneTransmittedZ(phi,theta1) 
% Written by Ufuk Paralı 
% This function calculates the axial force due to the 1st 
transmitted  
% photon-stream path (see Figure 8) given by Eq. 23 
of Gauthier et al. [7]. 
global az 
global ax 
global R 
global n0 
global ns 
global lambda0 
c=3e8; 
theta2=Snell(theta1); 
rhoTheta1Phi=rho2(phi,theta1,ax); 
z=az-R*cos(theta1); 
F1tz=(0.5/c)*(n0-ns*cos(theta1-
theta2)).*Intensity(rhoTheta1Phi,z).* 
(1-
refCoefSquare(theta1,theta2))*(R^2).*sin(2*theta1); 
return 
 
function F2rz=forceTwoReflectedZ(phi,theta1) 
% Written by Ufuk Paralı 
% This function calculates the axial force due to the 
2nd reflected  

% photon-stream path (see Figure 8) given by Eq. 24 
of Gauthier et al. [7]. 
global az 
global ax 
global R 
global n0 
global ns 
global lambda0 
c=3e8; 
theta2=Snell(theta1); 
rhoTheta1Phi=rho2(phi,theta1,ax); 
z=az-R*cos(theta1); 
F2rz=(0.5/c)*ns*(cos(theta1-theta2)+cos(3*theta2-
theta1)).*Intensity(rhoTheta1Phi,z).* 
(1-
refCoefSquare(theta1,theta2)).*refCoefSquare(theta1,
theta2)* 
(R^2).*sin(2*theta1); 
return 
 
function F2tz=forceTwoTransmittedZ(phi,theta1) 
% Written by Ufuk Paralı 
% This function calculates the axial force due to the 
2nd transmitted  
% photon-stream path (see Figure 8) given by Eq. 25 
of Gauthier et al. [7]. 
global az 
global ax 
global R 
global n0 
global ns 
global lambda0 
c=3e8; 
theta2=Snell(theta1); 
rhoTheta1Phi=rho2(phi,theta1,ax); 
z=az-R*cos(theta1); 
F2tz=(0.5/c)*(ns*cos(theta1-theta2)-
n0*cos(2*(theta1-theta2))).* 
Intensity(rhoTheta1Phi,z).*(1-
refCoefSquare(theta1,theta2)).* 
(1-
refCoefSquare(theta1,theta2))*(R^2).*sin(2*theta1); 
return 
 
function F1rr=forceOneReflectedR(phi,theta1) 
% Written by Ufuk Paralı 
% This function calculates the radial force due to the 
1st reflected  
% photon-stream path (see Figure 8) given by Eq. 34 
of Gauthier et al. [7]. 
global ax 
global az 
global R 
global n0 
global ns 
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global lambda0 
c=3e8; % Speed of light - m/sec 
z=az-R*cos(theta1); % Vertical displacement of a 
point – see Eq. 10 in the text 
theta2=Snell(theta1); 
rhoTheta1Phi=rho2(phi,theta1,ax); 
F1rr=-
(n0*0.5/c)*Intensity(rhoTheta1Phi,z).*sin(2*theta1).* 
refCoefSquare(theta1,theta2)*(R^2).*cos(phi).*sin(2*
theta1); 
return 
 
function F1tr=forceOneTransmittedR(phi,theta1) 
% Written by Ufuk Paralı 
% This function calculates the radial force due to the 
1st transmitted  
% photon-stream path (see Figure 8) given by Eq. 35 
of Gauthier et al. [7]. 
global ax 
global az 
global R 
global n0 
global ns 
global lambda0 
c=3e8; 
z=az-R*cos(theta1); 
theta2=Snell(theta1); 
rhoTheta1Phi=rho2(phi,theta1,ax); 
F1tr=(ns*0.5/c)*Intensity(rhoTheta1Phi,z).*sin(theta1
-theta2).* 
(1-
refCoefSquare(theta1,theta2))*(R^2).*cos(phi).*sin(2
*theta1); 
return 
 
function F2rr=forceTwoReflectedR(phi,theta1) 
% Written by Ufuk Paralı 
% This function calculates the radial force due to the 
2nd reflected  
% photon-stream path (see Figure 8) given by Eq. 36 
of Gauthier et al. [7]. 
global ax 
global az 
global R 
global n0 
global ns 
global lambda0 
c=3e8; 
z=az-R*cos(theta1); 
theta2=Snell(theta1); 
rhoTheta1Phi=rho2(phi,theta1,ax); 

F2rr=(ns*0.5/c)*Intensity(rhoTheta1Phi,z).*(sin(3*th
eta2-theta1)-sin(theta1-theta2))* 
(1-
refCoefSquare(theta1,theta2))*refCoefSquare(theta1,t
heta2)* 
(R^2).*cos(phi).*sin(2*theta1); 
return 
 
function F2tr=forceTwoTransmittedR(phi,theta1) 
% Written by Ufuk Paralı 
% This function calculates the radial force due to the 
2nd transmitted  
% photon-stream path (see Figure 8) given by Eq. 37 
of Gauthier et al. [7]. 
global ax 
global az 
global R 
global n0 
global ns 
global lambda0 
c=3e8; 
z=az-R*cos(theta1); 
theta2=Snell(theta1); 
rhoTheta1Phi=rho2(phi,theta1,ax); 
F2tr=(0.5/c)*Intensity(rhoTheta1Phi,z).*(n0*sin(2*(t
heta1-theta2))-ns* 
sin(theta1-theta2)).*(1-
refCoefSquare(theta1,theta2)).* 
(1-
refCoefSquare(theta1,theta2))*(R^2).*cos(phi).*sin(2
*theta1); 
return 
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