[6] Modak, S., Minimal spaces with a mathematical structure. J. Assoc. Arab Univ. Basic Appl. Sci., 22 (2017) 98-101.
[7] Modak, S. and Noiri, T., Remarks on locally closed sets. Acta Comment.Univ.Tartu. Math., 22(1) (2018) 57-64.
[8] Modak, S. and Islam, Md. M., On * and operators in topological spaces with ideals. Trans. A. Razmadze Math. Inst., 172 (2018) 491-497.
[9] Islam, Md. M. and Modak, S., Operator associated with the * and operators. J. Taibah Univ. Sci., 12(4) (2018) 444-449.
[10] Islam, Md. M. and Modak, S., Second approximation of local functions in ideal topological spaces. Acta Comment.Univ.Tartu.Math., 22(2) (2018) 245-256.
[11] Ekici, E. and Elmali, O., On Decompositions via Generalized Closedness in Ideal Spaces. Filomat, 29(4) (2015) 879-886.
[12] Modak, S. and Mistry, S., Ideal on supra topological space. Int. Journal of Math. Analysis, 6(1) (2012) 1-10.
[13] Khan, M., and Noiri, T., Semi-local functions in ideal topological spaces. J. Adv. Res. Pure Math., 2(1) (2010) 36-42.
[14] Csaszar, A., Modification of generalized topologies via hereditary classes. Acta Math. Hungar., 115(1-2) (2007) 29-36.
[15] zbakir, O.B. and Yildirim, E.D., On some closed sets in ideal minimal spaces. Acta Math. Hungar., 125(3) (2009) 227-235.
[16] Hayashi, E., Topologies defined by local properties. Math. Ann., 156 (1964) 205-215.
[17] Natkaniec, T., On I-continuity and I-semicontinuity points. Math. Slovaca, 36(3) (1986) 297-312.
[18] Hamlett, T.R. and Jankovic, D., Ideals in topological spaces and the set operator . Bull. U.M.I., 7(4-B) (1990) 863-874.
[19] Modak, S. and Bandyopadhyay, C., A note on - operator. Bull. Malyas. Math. Sci. Soc., 30(1) (2007) 43-48.
[20] Csaszar, A., Generalized open sets. Acta Math. Hungar., 75(1-2) (1997) 65-87.
[21] Popa V. and Noiri T., On M-continuous functions. Anal. Univ. ``Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor. Fasc.II, 18(23) (2000) 31-41.
[22] Mashhour, A.S., Allam, A.A., Mahmoud, F.S. and Khedr, F.H., On supra topological spaces. Indian J. Pure and Appl. Math., 14(4) (1983) 502-510.
[23] Newcomb, R.L., Topologies which are compact modulo an ideal. Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, (1967).
[24] Njastad, O., Remarks on topologies defined by local properties. Norske Vid-Akad. Oslo (N.S), 8 (1966) 1-16.
[25] Pavlovic, A., Local function versus local closure function in ideal topological spaces. Filomat, 30(14) (2016) 3725-3731.
[26] Dontchev, J., Ganster M., Rose D., Ideal resolvability. Topology Appl., 93 (1999) 1-16.
Through this paper, we shall obtain common properties of local function and set operator $\psi$ and introduce the approximations of local function and set operator $\psi$. We also determined expansion of local function and set operator $\psi$ .
[6] Modak, S., Minimal spaces with a mathematical structure. J. Assoc. Arab Univ. Basic Appl. Sci., 22 (2017) 98-101.
[7] Modak, S. and Noiri, T., Remarks on locally closed sets. Acta Comment.Univ.Tartu. Math., 22(1) (2018) 57-64.
[8] Modak, S. and Islam, Md. M., On * and operators in topological spaces with ideals. Trans. A. Razmadze Math. Inst., 172 (2018) 491-497.
[9] Islam, Md. M. and Modak, S., Operator associated with the * and operators. J. Taibah Univ. Sci., 12(4) (2018) 444-449.
[10] Islam, Md. M. and Modak, S., Second approximation of local functions in ideal topological spaces. Acta Comment.Univ.Tartu.Math., 22(2) (2018) 245-256.
[11] Ekici, E. and Elmali, O., On Decompositions via Generalized Closedness in Ideal Spaces. Filomat, 29(4) (2015) 879-886.
[12] Modak, S. and Mistry, S., Ideal on supra topological space. Int. Journal of Math. Analysis, 6(1) (2012) 1-10.
[13] Khan, M., and Noiri, T., Semi-local functions in ideal topological spaces. J. Adv. Res. Pure Math., 2(1) (2010) 36-42.
[14] Csaszar, A., Modification of generalized topologies via hereditary classes. Acta Math. Hungar., 115(1-2) (2007) 29-36.
[15] zbakir, O.B. and Yildirim, E.D., On some closed sets in ideal minimal spaces. Acta Math. Hungar., 125(3) (2009) 227-235.
[16] Hayashi, E., Topologies defined by local properties. Math. Ann., 156 (1964) 205-215.
[17] Natkaniec, T., On I-continuity and I-semicontinuity points. Math. Slovaca, 36(3) (1986) 297-312.
[18] Hamlett, T.R. and Jankovic, D., Ideals in topological spaces and the set operator . Bull. U.M.I., 7(4-B) (1990) 863-874.
[19] Modak, S. and Bandyopadhyay, C., A note on - operator. Bull. Malyas. Math. Sci. Soc., 30(1) (2007) 43-48.
[20] Csaszar, A., Generalized open sets. Acta Math. Hungar., 75(1-2) (1997) 65-87.
[21] Popa V. and Noiri T., On M-continuous functions. Anal. Univ. ``Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor. Fasc.II, 18(23) (2000) 31-41.
[22] Mashhour, A.S., Allam, A.A., Mahmoud, F.S. and Khedr, F.H., On supra topological spaces. Indian J. Pure and Appl. Math., 14(4) (1983) 502-510.
[23] Newcomb, R.L., Topologies which are compact modulo an ideal. Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, (1967).
[24] Njastad, O., Remarks on topologies defined by local properties. Norske Vid-Akad. Oslo (N.S), 8 (1966) 1-16.
[25] Pavlovic, A., Local function versus local closure function in ideal topological spaces. Filomat, 30(14) (2016) 3725-3731.
[26] Dontchev, J., Ganster M., Rose D., Ideal resolvability. Topology Appl., 93 (1999) 1-16.
Modak, S., Selim, S., & Islam, M. M. (2020). Common properties and approximations of local function and set operator $\psi$. Cumhuriyet Science Journal, 41(2), 360-368. https://doi.org/10.17776/csj.644158