

Cumhuriyet Science Journal

e-ISSN: 2587-246X ISSN: 2587-2680 Cumhuriyet Sci. J., 41(2) (2020) 360-368 http://dx.doi.org/10.17776/csj.644158

Common properties and approximations of local function and set operator ψ

Sk SELIM¹ D Md. Monirul ISLAM² Shyamapada MODAK^{3,*}

¹ University of Gour Banga, Department of Mathematics, P.O. Mokdumpur, Malda – 732103, West Bengal, India

² Kaliachak College, Department of Mathematics, Sultanganj, Malda – 732201, West Bengal, India

³ University of Gour Banga, Department of Mathematics, P.O. Mokdumpur, Malda – 732103, West Bengal, India

Abstract

Through this paper, we shall obtain common properties of local function and set operator ψ and introduce the approximations of local function and set operator ψ . We also determined expansion of local function and set operator ψ .

Article info

History: Received: 08.11.2019Accepted: 01.04.2020Keywords: Local function, ψ -operator,

 $A = B[mod \mathcal{I}],$
compatible ideal,
codense ideal.

1. Introduction

The study of ideals on topological spaces was first introduced by K. Kuratowski [1]. The authors, Al-Omari and Noiri [2,3], Modak [4,5,6], Modak and Islam [7,8,9,10], Ekici and Elmali [11], Modak and Mistry [12], Khan and Noiri [13], Csaszar [14], \ddot{O} zbakir and Yildirim [15] have introduced the study of ideals on the generalized topological space. We know from [1] that, a subcollection \mathcal{I} of $\wp(X)$, the powerset of X, is called an ideal on X if (i) for $A, B \subseteq X$ and $A \subseteq B \in \mathcal{I}$, $A \in \mathcal{I}$ (hereditary) and (ii) for $A, B \subseteq X$ and $A, B \in \mathcal{I}$, $A \cup B \in \mathcal{I}$ (finite additivity). Hayashi [16] introduced localization properties of ideal topological space (an ideal \mathcal{I} on a topological space (X, τ) is called an ideal topological space and it is denoted as (X, τ, \mathcal{I})). For a subset A of X, the local function of A in the ideal topological space (X, τ, \mathcal{I}) , is denoted as A^* and defined as:

 $A^* = \{x \in X : U_x \cap A \notin \mathcal{I}, U_x \in \tau(x)\}, \text{ where } \tau(x) \text{ is collection of all open sets of } (X, \tau) \text{ containing } x.$

In regards of local function, Natkaniec [17] had defined the ψ operator. For an ideal topological space (X, τ, \mathcal{I}) , the ψ operator is defined as follows:

 $\psi(A) = X \setminus (X \setminus A)^*$, for every $A \subseteq X$.

Again for its equivalent definition, see [18] and [19].

In this paper, our intension is to study the properties of local function and ψ operator in which topological space, generalized topological space [20], *m*-space [2], minimal space [21] and supra-topological space [22] etc. are not an essential part. That means we study the properties which hold in any subcollecton of $\wp(X)$. We also characterize the Newcomb's idea $A = B[mod\mathcal{I}]$, τ -boundary [23] and Njastad's compatibility [24]. Secondly, we introduce and study the approximations of local function and the operator ψ . Finally we have

^{*}Corresponding author. Email address: spmodak2000@yahoo.co.in

http://dergipark.gov.tr/csj ©2020 Faculty of Science, Sivas Cumhuriyet University

considered the expansion of above two operators. However A. Pavlovic[25] have studied "local function versus local closure function in ideal topological spaces".

2. Common Properties

In this section, we shall consider the properties of local function and operator ψ which are not dependent on topology, generalized topology, minimal structure etc.

Let X be a set, $\mathcal{A} \subseteq \wp(X)$ and \mathcal{I} be an ideal on X, then we call $(X, \mathcal{A}, \mathcal{I})$ a space.

Definition 2.1. Let $(X, \mathcal{A}, \mathcal{I})$ be a space. A set operator $()^{c^*} : \wp(X) \to \wp(X)$, called the common-local function of \mathcal{I} on X with respect to \mathcal{A} , is defined as: $(A)^{c^*}(\mathcal{A}, \mathcal{I}) = \{x \in X : U \cap A \notin \mathcal{I}, \text{ for every } U \in \mathcal{A}(x)\}, \text{ where } \mathcal{A}(x) = \{U \in \mathcal{A} : x \in U\}.$

This is simply called c^* -local function and denoted as A^{c^*} , for $A \subseteq X$.

Following is the example of a c^* -local function of a set:

Example 2.2. Let $X = \{a, b, c\}$, $\mathcal{A} = \{\{a\}, \{b\}, \{a, c\}\} \subseteq \wp(X)$ and $\mathcal{I} = \{\phi, \{a\}\}$. Take $B = \{b, c\}$. Then $B^{c^*} = \{b, c\}$.

Theorem 2.3. Let $(X, \mathcal{A}, \mathcal{I})$ be a space. Then following hold:

- 1. $(\emptyset)^{c^*} = \emptyset$. 2. If $A \subset B \subset X$, $A^{c^*} \subset B^{c^*}$.
- 3. If $I \in \mathcal{I}$, then $(I)^{c^*} = \emptyset$.

4. If $A \subseteq X$ and $I \in \mathcal{I}$, then $(A \setminus I)^{c^*} = (A \cup I)^{c^*} = A^{c^*}$.

5. For an ideal \mathcal{H} on X with $\mathcal{H} \subseteq \mathcal{I}, (A)^{c^*}(\mathcal{I}) \subseteq (A)^{c^*}(\mathcal{H})$.

6. For an ideal \mathcal{J} on X, $A^{c^*}(\mathcal{I} \cap \mathcal{J}) = A^{c^*}(\mathcal{I}) \cup B^{c^*}(\mathcal{J})$.

Proof. 1. Obvious from the fact that $\emptyset \in \mathcal{I}$.

2. Let $x \in A^{c^*}$. Then for all $U \in \mathcal{A}(x)$, $U \cap A \notin \mathcal{I}$. Thus $U \cap B \notin \mathcal{I}$, otherwise $U \cap A \in \mathcal{I}$. Hence the result.

3. It follows from the fact that, for any $U \in \mathcal{A}$, $U \cap I \in \mathcal{I}$, since $I \in \mathcal{I}$.

4. Claim:
$$A^{c^*} \subseteq (A \setminus I)^{c^*}$$

Let $x \in (A)^{c^*}$. Then for all $U \in \mathcal{A}(x)$, $A \cap U \notin \mathcal{I}$. If possible, suppose that $U \cap (A \setminus I) \in \mathcal{I}$. Then for some $J \in \mathcal{I}$, $U \cap (A \setminus I) = J$. Then $(U \cap A) \setminus I = J$, and hence $U \cap A = I \cup J \in \mathcal{I}$, a contradiction. Claim: $(A \cup I)^{c^*} \subseteq A^{c^*}$.

Let $x \in (A \cup I)^{c^*}$. Then for all $U_x \in \mathcal{A}(x), U_x \cap (A \cup I) \notin \mathcal{I}$. If possible, suppose that $A \cap U_x \in \mathcal{I}$.

Then for some $J \in \mathcal{I}$, $A \cap U_x = J$. Note that $U_x \cap (A \cup I) = (U_x \cap A) \cup (U_x \cap I) = J \cup (U_x \cap I)$. Since $U_x \cap I \subseteq I$, then $U_x \cap (A \cup I) \in \mathcal{I}$, a contradiction.

5. It follows from the fact that every member of $\mathcal H$ is also a member of $\mathcal I$.

6. From (5), $A^{c^*}(\mathcal{I}) \cup A^{c^*}(\mathcal{J}) \subseteq A^{c^*}(\mathcal{I} \cap \mathcal{J})$. Let $x \in A^{c^*}(\mathcal{I} \cap \mathcal{J})$. Then for all $U \in \mathcal{A}(x)$, $U \cap A \notin \mathcal{I} \cap \mathcal{J}$. Thus $U \cap A \notin \mathcal{I}$ or $U \cap A \notin \mathcal{J}$. This implies that $x \in A^{c^*}(\mathcal{I})$ or $x \in A^{c^*}(\mathcal{J})$, and hence $x \in A^{c^*}(\mathcal{I}) \cup A^{c^*}(\mathcal{J})$.

Lemma 2.4. Let $(X, \mathcal{A}, \mathcal{I})$ be a space. Then $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$ if and only if $X = X^{c^*}$.

Proof. Suppose $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$. It is obvious that $X^{c^*} \subseteq X$. For reverse inclusion, let $x \in X$. If possible suppose that $x \notin X^{c^*}$. Then there exists $U_x \in \mathcal{A}(x)$ such that $U_x \cap X \in \mathcal{I}$. This implies that $U_x \in \mathcal{I}$, a contradiction.

Conversely, suppose that $X = X^{c^*}$ holds. If possible, suppose that $U \in \mathcal{A} \cap \mathcal{I}$, where $x \in U$. Then $U \cap X \in \mathcal{I}$, by hereditary property. Thus $x \notin X^{c^*}$, a contradiction.

If an ideal \mathcal{I} satisfies the property $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$, then the ideal \mathcal{I} is called \mathcal{A} -codense ideal.

This property is similar to Dontchev, Ganster and Rose's [26] 'codense' ideal. An ideal \mathcal{I} in an ideal topological space is called codense ideal if $\mathcal{I} \cap \tau = \{\emptyset\}$. Newcomb [23], Hamlett and Jankovic[18] called such ideal as ' τ -boundary' whereas Dontchev [27] called such spaces as 'Hayashi-Samuel' spaces. In fact such ideals play a very important role in the study of ideals (see: [6,19,28,29,30]).

We define an operator similar to Natkaniec's ψ -operator [17]:

Definition 2.5. Let $(X, \mathcal{A}, \mathcal{I})$ be a space. An operator $\psi_c : \wp(X) \to \wp(X)$ is defined as follows: for every $A \in \wp(X), \psi_c(A) = \{x \in X : \text{there exists a } U \in \mathcal{A}(x) \text{ such that } U \setminus A \in \mathcal{I}\}.$

Equivalently $\psi_c(A) = X \setminus (X \setminus A)^{c^*}$.

Proof. Let $x \in X \setminus (X \setminus A)^{c^*}$. Then $x \notin (X \setminus A)^{c^*}$, and thus there exists $U \in \mathcal{A}(x)$ such that $U \cap (X \setminus A) \in \mathcal{I}$. So $U \setminus A \in \mathcal{I}$. Hence $x \in \psi_c(A)$.

Let $x \in \psi_c(A)$. Then from definition, there exists $U \in \mathcal{A}(x)$ such that $U \setminus A \in \mathcal{I}$. This implies that $U \cap (X \setminus A) \in \mathcal{I}$. Thus $x \notin (X \setminus A)^{c^*}$, and hence $x \in X \setminus (X \setminus A)^{c^*}$.

Here we find out the value of ψ_c of a set in a space.

Example 2.6.Let $X = \{a, b, c\}$, $\mathcal{A} = \{\phi, \{a, b\}, \{a, c\}\}$ and $\mathcal{I} = \{\phi, \{b\}\}$. Take $B = \{a, b\}$. Then $\psi_c(B) = X \setminus (X \setminus B)^{c^*} = X \setminus \{c\}^{c^*} = X \setminus \{c\} = \{a, b\}$.

Theorem 2.7. Let $(X, \mathcal{A}, \mathcal{I})$ be a space.

1. If $A \subseteq B$, then $\psi_c(A) \subseteq \psi_c(B)$. 2. If $U \in \mathcal{A}$, then $U \subseteq \psi_c(U)$. 3. If $A, B \in \wp(X)$, then $\psi_c(A) \cup \psi_c(B) \subseteq \psi_c(A \cup B)$. 4. If $A \subseteq X$, then $\psi_c(A) = \psi_c(\psi_c(A))$ if and only if $(X \setminus A)^{c^*} = ((X \setminus A)^{c^*})^{c^*}$. 5. If $I \in \mathcal{I}$, then $\psi_c(I) = X \setminus X^{c^*}$. 6. If $A \subseteq X, I \in \mathcal{I}$, then $\psi_c(A \cup I) = \psi_c(A)$.

- 7. If $(A \setminus B) \cup (B \setminus A) \in \mathcal{I}$, then $\psi_c(A) = \psi_c(B)$.
- Proof. 1. Obvious from Theorem 2.3 (2).

2. Let $x \in U$. Then $x \notin X \setminus U$ and $U \cap (X \setminus U) = \emptyset \in \mathcal{I}$. Thus $x \notin (X \setminus U)^{c^*}$. Hence $x \in \psi_c(U)$.

3. Obvious from monotonicity of ψ_c .

4. Suppose $\psi_c(A) = \psi_c(\psi_c(A))$. Then $X \setminus (X \setminus A)^{c^*} = \psi_c[X \setminus (X \setminus A)^{c^*}]$, and hence

- $X \setminus (X \setminus A)^{c^*} = [X \setminus [(X \setminus A)^{c^*}]^{c^*}]$. This implies that $(X \setminus A)^{c^*} = ((X \setminus A)^{c^*})^{c^*}$.
- 5. Obvious from Theorem 2.3 (4).
- 6. Obvious from 5.

7. Given that $(A \setminus B) \cup (B \setminus A) \in \mathcal{I}$, and let $(A \setminus B) = I$, $(B \setminus A) = J$. Note that $I, J \in \mathcal{I}$ by heredity. Also observe that $B = (A \setminus I) \cup J$. Thus $\psi_c(B) = \psi_c[(A \setminus I) \cup J] = \psi_{c^*}(A \setminus I) = \psi_c(A)$.

If we take reverse implication of the above relations, then we get the converse part.

Corollary 2.8. Let $(X, \mathcal{A}, \mathcal{I})$ be a space, then the following properties

are equivalent:

1. $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$; 2. $\psi_c(\emptyset) = \emptyset$; 3. If $I \in \mathcal{I}$, then $\psi_c(I) = \emptyset$. Proof. 1 implies 2: $\psi_c(\emptyset) = X \setminus X^{c^*} = \emptyset$, since $\mathcal{A} \cap \mathcal{I} = \emptyset$. 2 implies 3: $\psi_c(I) = X \setminus (X \setminus I)^{c^*} = X \setminus X^{c^*}$, since $I \in \mathcal{I}$. Thus $\psi_c(I) = \emptyset$. 3 implies 1: $\psi_c(I) = \emptyset$ gives $X = X^{c^*}$. Thus $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$.

Definition 2.9. Let $(X, \mathcal{A}, \mathcal{I})$ be a space. We say the \mathcal{A} -structure \mathcal{A} is \mathcal{A} -compatible with the ideal \mathcal{I} , denoted $\mathcal{A} \sim \mathcal{I}$, if the following property holds: for every $A \subseteq X$, if for every $x \in A$ there exists $U \in \mathcal{A}(x)$ such that $U \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$.

Lemma 2.10. Let $(X, \mathcal{A}, \mathcal{I})$ be a space. Then $\mathcal{A} \sim \mathcal{I}$ if and only if $\psi_c(A) \setminus A \in \mathcal{I}$, for every $A \subseteq X$. Proof. Suppose $\mathcal{A} \sim \mathcal{I}$ holds. Then for $U \setminus A \in \mathcal{I}$, $\psi_c(A) \cap (U \setminus A) \in \mathcal{I}$. This implies that $U \cap (\psi_c(A) \setminus A) \in \mathcal{I}$, then from $\mathcal{A} \sim \mathcal{I}$, $\psi_c(A) \setminus A \in \mathcal{I}$.

Conversely suppose that $\psi_c(A) \setminus A \in \mathcal{I}$, for every $A \subseteq X$. Let $x \in A$. Also there is $U_x \in \mathcal{A}(x)$ such that $U_x \cap A \in \mathcal{I}$ for every $x \in A$. Then $x \notin A^{c^*}$, and hence $x \in X \setminus A^{c^*}$. Thus $A \subseteq X \setminus A^{c^*}$. Note that $\psi_c(X \setminus A) \setminus (X \setminus A) = [X \setminus (X \setminus (X \setminus A))^{c^*}] \setminus (X \setminus A) = (X \setminus A^{c^*}) \setminus (X \setminus A) = (X \setminus A^{c^*}) \cap A$. Therefore $\psi_c(X \setminus A) \setminus (X \setminus A) = (X \setminus A^{c^*}) \cap A = A$ (as $A \subseteq X \setminus A^{c^*}$). Since $\psi_c(A) \setminus A \in \mathcal{I}$ for every $A \subseteq X$, thus $A \in \mathcal{I}$. Therefore, $\mathcal{A} \sim I$.

Following example supports the Lemma 2.10.

Example 2.11. Let $X = \{a, b\}$, $\mathcal{A} = \{\{a\}, \{b\}\}$ and $\mathcal{I} = \{\phi, \{b\}\}$. Then $\phi^{c^*} = \phi, \{a\}^{c^*} = \{a\}, \{b\}^{c^*} = \phi$ and $X^{c^*} = \{a\}$. Then $\psi_c(\phi) = X \setminus X^{c^*} = \phi$, $\psi_c(\{a\}) = X \setminus \{b\}^{c^*} = X$, $\psi_c(\{b\}) = X \setminus \{a\}^{c^*} = \{b\}$ and $\psi_c(X) = X \setminus \phi^{c^*} = X$. Then we see that $\psi_c(\phi) \setminus \phi = \phi \in \mathcal{I}$, $\psi_c(\{a\}) \setminus \{a\} = \{b\} \in \mathcal{I}$, $\psi_c(\{b\}) \setminus \{b\} = \phi \in \mathcal{I}$ and $\psi_c(X) \setminus X = \phi \in \mathcal{I}$ and $\mathcal{A} \sim \mathcal{I}$.

Corollary 2.12. Let $(X, \mathcal{A}, \mathcal{I})$ be a space with $\mathcal{A} \sim \mathcal{I}$. Then $\psi_c(\psi_c(A)) \subseteq \psi_c(A)$, for every $A \subseteq X$. Proof. From above theorem, for any $A \subseteq X$, $\psi_c(A) \setminus A \in \mathcal{I}$. Then $\psi_c(A) \subseteq A \cup I$, for some $I \in \mathcal{I}$. Then $\psi_c(\psi_c(A)) \subseteq \psi_c(A \cup I) = \psi_c(A)$ (from Theorem 2.7 (6)).

We shall give an example against the Corollary 2.12.

Example 2.13. Consider the space $(X, \mathcal{A}, \mathcal{I})$, where $X = \{a, b\}$, $\mathcal{A} = \{\{a\}, \{b\}\}$ and $\mathcal{I} = \{\phi, \{b\}\}$. Then $\mathcal{A} \sim \mathcal{I}$, by Example 2.11.Now $\phi^{c^*} = \phi, \{a\}^{c^*} = \{a\}, \{b\}^{c^*} = \phi$ and $X^{c^*} = \{a\}$ and $\psi_c(\phi) = X \setminus X^{c^*} = \phi$, $\psi_c(\{a\}) = X \setminus \{b\}^{c^*} = X$, $\psi_c(\{b\}) = X \setminus \{a\}^{c^*} = \{b\}$ and $\psi_c(X) = X \setminus \phi^{c^*} = X$. Then $\psi_c(\psi_c(\phi)) = \phi = \psi_c(\phi), \ \psi_c(\psi_c(\{a\})) = X = \psi_c(\{a\}), \ \psi_c(\psi_c(\{b\})) = \{b\} = \psi_c(\{b\})$ and $\psi_c(\psi_c(X)) = X = \psi_c(X)$.

Newcomb has defined $A = B[mod \mathcal{I}]$ [23] if $(A \setminus B) \cup (B \setminus A) \in \mathcal{I}$.

Definition 2.14. Let $(X, \mathcal{A}, \mathcal{I})$ be a space. A subset *B* of *X* is called a Baire set with respect to \mathcal{A} and \mathcal{I} , denoted $A \in \mathbf{B}_r(X, \mathcal{A}, \mathcal{I})$, if there exists a $A \in \mathcal{A}$ such that $B = A[mod \mathcal{I}]$. Following example is the existence of Baire set.

Example 2.15. Let $X = \mathbb{R}$, set of real numbers, $\mathcal{A} = \{\emptyset, \mathbb{R}, \mathbb{Q} \cup \{i\}, \mathbb{R} \setminus \mathbb{Q}\}$, and $\mathcal{I} = \wp(\mathbb{Q})$, where \mathbb{Q} is the set of rational numbers and $i \in \mathbb{R} \setminus \mathbb{Q}$. Consider $A = \{i\}$. Then for $B = \mathbb{Q} \cup \{i\}$, $(A \setminus B) \cup (B \setminus A) = \emptyset \cup (\mathbb{Q} \cup \{i\} \setminus \{i\} = \mathbb{Q} \in \mathcal{I}$. Thus A is a Baire set in $(X, \mathcal{A}, \mathcal{I})$.

Theorem 2.16. Let $(X, \mathcal{A}, \mathcal{I})$ be a space with $\mathcal{A} \sim \mathcal{I}$. If $U, V \in \mathcal{A}$ and $\psi_c(U) = \psi_c(V)$, then $U = V[mod \mathcal{I}]$. Proof. Since $U \in \mathcal{A}$, we have $U \subseteq \psi_c(U)$ (from Theorem 2.7 (2)), and hence $U \setminus V \subseteq \psi_c(U) \setminus V = \psi_c(V) \setminus V \in \mathcal{I}$ (by Lemma 2.10). Similarly $V \setminus U \in \mathcal{I}$. Now $(U \setminus V) \cup (V \setminus U) \in \mathcal{I}$ (by finite additivity). Hence $U = V[mod \mathcal{I}]$.

It is obvious that $A = B[mod \mathcal{I}]$ is an equivalence relation.

Theorem 2.17. Let $(X, \mathcal{A}, \mathcal{I})$ be a space with $\mathcal{A} \sim \mathcal{I}$. If $A, B \in \mathbf{B}_r(X, \mathcal{A}, \mathcal{I})$, and $\psi_c(A) = \psi_c(B)$, then $A = B[mod \mathcal{I}]$.

Proof. Let $U, V \in \mathcal{A}$ such that $A = U[mod \mathcal{I}]$ and $B = V[mod \mathcal{I}]$. Now $\psi_c(A) = \psi_c(B)$ and $\psi_c(B) = \psi_c(V)$ (by Theorem 2.7 (7)). Since $\psi_c(A) = \psi_c(U)$ implies that $\psi_c(U) = \psi_c(V)$, hence $U = V[mod \mathcal{I}]$ (by Theorem 2.16). Hence $A = B[mod \mathcal{I}]$ by transitivity.

Theorem 2.18. Let $(X, \mathcal{A}, \mathcal{I})$ be a space.

1. If $B \in \mathbf{B}_r(X, \mathcal{A}, \mathcal{I}) \setminus \mathcal{I}$, then there exists $A \in \mathcal{A} \setminus \{\emptyset\}$ such that $B = A[mod \mathcal{I}]$.

2. Suppose $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$, then $B \in \mathbf{B}_r(X, \mathcal{A}, \mathcal{I}) \setminus \mathcal{I}$ if and only if there exist $A \in \mathcal{A} \setminus \{\emptyset\}$ such that $B = A[mod \mathcal{I}]$.

Proof. 1. Let $B \in \mathbf{B}_r(X, \mathcal{A}, \mathcal{I}) \setminus \mathcal{I}$. Then $B \in \mathbf{B}_r(X, \mathcal{A}, \mathcal{I})$. If there does not exist $A \in \mathcal{A} \setminus \{\emptyset\}$ such that $B = A[mod \mathcal{I}]$, we have $B = \emptyset[mod \mathcal{I}]$. This implies that $B \in \mathcal{I}$, which is a contradiction.

2. Here we prove converse part only. Let $A \in \mathcal{A} \setminus \{\emptyset\}$ such that $B = A[mod \mathcal{I}]$. Then $A = (B \setminus J) \cup I$, where $J = B \setminus A$, $I = A \setminus B \in \mathcal{I}$. If $B \in \mathcal{I}$, then $A \in \mathcal{I}$ by heredity and additivity, which contradicts $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$.

3. Approximation

Approximation is a part of analysis, but in this section, we introduce a method for approximation of local function and set operator ψ with the help of generalized open sets of topological space.

We shall denote 'Int' and 'Cl'as the 'interior' and 'closure' operator respectively of topological spaces.

Definition 3.1. Let (X, τ) be a topological space. A subset A of X is called semi-open [31] (resp. preopen [32], semi-preopen [33] (= β open [34]), b -open [35]) set, if $A \subseteq Cl(Int(A))$ (resp. $A \subseteq Int(Cl(A))$, $A \subseteq Cl(Int(Cl(A))), A \subseteq Cl(Int(A)) \cup Int(Cl(A))$).

The collection of all semi-open (resp. preopen, semi-preopen, b -open) in a topological space (X, τ) is denoted as $SO(X, \tau)$ (resp. $PO(X, \tau)$, $\beta O(X, \tau)$, $BO(X, \tau)$).

Further SO(X, x) (resp. PO(X, x), $\beta O(X, x)$, BO(X, x)) is the collection of all semi-open (resp. preopen, semi-preopen, b -open) sets containing x in a topological space (X, τ) .

From definition, for a topological space (X, τ) , we have $\tau \subseteq SO(X, \tau) \subseteq \beta O(X, \tau) \subseteq BO(X, \tau)$, and $\tau \subseteq PO(X, \tau) \subseteq \beta O(X, \tau) \subseteq BO(X, \tau)$.

Definition 3.2. Let (X, τ, \mathcal{I}) be an ideal topological space. For a subset A of X, we define the following operator: $A^{*p}(\text{ resp. } A^{*s}, A^{*\beta}, A^{*b}) = \{x \in X : A \cap U_x \notin \mathcal{I} \text{ for every } U_x \in PO(X, x) \text{ (resp. } SO(X, x), \beta O(X, x), BO(X, x) \}$.

Theorem 3.3. Let (X, τ, \mathcal{I}) be an ideal topological space. Then

1. for $A \subseteq X$, $A^{*b} \subseteq A^{*\beta} \subseteq A^{*s} \subseteq A^*$. 2. for $A \subseteq X$, $A^{*b} \subseteq A^{*\beta} \subseteq A^{*p} \subseteq A^*$.

Let (X, τ) be a topological space. Then for $A \subseteq X$, we define sCl(A) (resp. pCl(A), $\beta Cl(A)$, bCl(A)) = $\bigcap \{F \supseteq A : X \setminus F \in SO(X, \tau) \text{ (resp. } PO(X, \tau), \beta O(X, \tau), BO(X, \tau))\}.$

Proposition 3.4. Let (X, τ) be a topological space. Then for any $A \subseteq X$, (1) $bCl(A) \subseteq \beta Cl(A) \subseteq sCl(A) \subseteq Cl(A)$, (2) $bCl(A) \subseteq \beta Cl(A) \subseteq pCl(A) \subseteq Cl(A)$.

Definition 3.5. Let (X, τ, \mathcal{I}) be an ideal topological space. For a subset A of X, we define the following operator: $\gamma_c(A)$ [3] (resp. $\gamma_{pc}(A), \gamma_{sc}(A), \gamma_{bc}(A)) = \{x \in X : A \cap Cl(U_x) \text{ (resp. } A \cap pCl(U_x), A \cap sCl(U_x), A \cap bCl(U_x)\} \notin \mathcal{I} \text{ for every } U_x \in \tau(x)\}$, where $\tau(x) = \{U \in \tau : x \in U\}$.

Theorem 3.6. Let (X, τ, \mathcal{I}) be an ideal topological space. Then for any $A \subseteq X$,

1.
$$A^* \subseteq \gamma_c(A) \subseteq \gamma_{sc}(A) \subseteq \gamma_{\beta c}(A) \subseteq \gamma_{bc}(A)$$
,
2. $A^* \subseteq \gamma_c(A) \subseteq \gamma_{pc}(A) \subseteq \gamma_{\beta c}(A) \subseteq \gamma_{bc}(A)$.

Next we consider following operators:

 $\psi_s(A)$ (resp., $\psi_p(A), \psi_b(A)$) = $X \setminus (X \setminus A)^{*s}$ (resp., $(X \setminus A)^{*p}, (X \setminus A)^{*\beta}, (X \setminus A)^{*b}$).

Theorem 3.7. Let (X, τ, \mathcal{I}) be an ideal topological space. Then

1. for $A \subseteq X$, $\psi(A) \subseteq \psi_s(A) \subseteq \psi_\beta(A) \subseteq \psi_b(A)$. 2. for $A \subseteq X$, $\psi(A) \subseteq \psi_p(A) \subseteq \psi_\beta(A) \subseteq \psi_b(A)$.

Definition 3.8. Let (X, τ, \mathcal{I}) be an ideal topological space. For a subset A of X, we define the following operator: $\Gamma_c(A)$ (resp. $\Gamma_{pc}(A), \Gamma_{sc}(A), \Gamma_{\beta c}(A), \Gamma_{bc}(A) = X \setminus \gamma_c(X \setminus A)$ (resp. $\gamma_{pc}(X \setminus A)$, $\gamma_{sc}(X \setminus A), \gamma_{\beta c}(X \setminus A)$).

Theorem 3.9. Let (X, τ, \mathcal{I}) be an ideal topological space. Then for any $A \subseteq X$, 1. $\psi(A) \supseteq \Gamma_c(A) \supseteq \Gamma_{sc}(A) \supseteq \Gamma_{\beta c}(A) \supseteq \Gamma_{bc}(A)$,

2. $\psi(A) \supseteq \Gamma_c(A) \supseteq \Gamma_{pc}(A) \supseteq \Gamma_{\beta c}(A) \supseteq \Gamma_{bc}(A)$.

Expansion of local function and set operator ψ have been shown by the following corollaries:

Corollary 3.10. Let (X, τ, \mathcal{I}) be an ideal topological space. Then

1. for $A \subseteq X$, $A^{*b} \subseteq A^{*\beta} \subseteq A^{*s} \subseteq A^* \subseteq \gamma_c(A) \subseteq \gamma_{sc}(A) \subseteq \gamma_{\beta c}(A) \subseteq \gamma_{bc}(A)$. 2. for $A \subseteq X$, $A^{*b} \subseteq A^{*\beta} \subseteq A^{*p} \subseteq A^* \subseteq \gamma_c(A) \subseteq \gamma_{pc}(A) \subseteq \gamma_{\beta c}(A) \subseteq \gamma_{bc}(A)$.

Corollary 3.11. Let (X, τ, \mathcal{I}) be an ideal topological space. Then

1. for $A \subseteq X$, $\Gamma_{bc}(A) \subseteq \Gamma_{\beta c}(A) \subseteq \Gamma_{c}(A) \subseteq \Gamma_{c}(A) \subseteq \psi(A) \subseteq \psi_{s}(A) \subseteq \psi_{\beta}(A) \subseteq \psi_{b}(A)$. 2. for $A \subseteq X$, $\Gamma_{bc}(A) \subseteq \Gamma_{\beta c}(A) \subseteq \Gamma_{pc}(A) \subseteq \Gamma_{c}(A) \subseteq \psi(A) \subseteq \psi_{\beta}(A) \subseteq \psi_{\beta}(A) \subseteq \psi_{b}(A)$.

4. Conclusion

Anyone can introduce a new type of generalized open set in the topological space and if this collection lies in between the collection of semi-open sets and semi-preopen sets (resp. preopen sets and semi-pre open sets), then we get an another local function whose value lies in between $()^{*\beta}$ and $()^{*s}$ (resp. $()^{*\beta}$ and $()^{*p}$). Similarly we can split the values of ψ_s and ψ_{β} , ψ_p and ψ_{β} , γ_{sc} and $\gamma_{\beta c}$, γ_{pc} and $\gamma_{\beta c}$, $\Gamma_{\beta c}$ and Γ_{sc} and $\Gamma_{\beta c}$ and $\Gamma_{\rho c}$.

Conflicts of interest

There is no conflict of interest.

References

- [1] Kuratowski, K., Topology I. Warszawa, 1933.
- [2] Al-omari, A. and Noiri, T., A topology via *M*-local functions in ideal m-spaces. *Questions Answers Gen. Topology*, 30 (2012) 105-114.
- [3] Al-omari, A. and Noiri, T., Local closure functions in ideal topological spaces. *Novi Sad J. Math.*, 12(2) (2013) 139-149.
- [4] Modak, S., Grill-filter space. J. Indian Math. Soc., 80 (2012) 313-320.
- [5] Modak, S., Ideal on generalized topological spaces. Sci. Magna, 11(2) (2016) 14-20.
- [6] Modak, S., Minimal spaces with a mathematical structure. J. Assoc. Arab Univ. Basic Appl. Sci., 22 (2017) 98-101.
- [7] Modak, S. and Noiri, T., Remarks on locally closed sets. Acta Comment. Univ. Tartu. Math., 22(1) (2018) 57-64.
- [8] Modak, S. and Islam, Md. M., On * and Ψ operators in topological spaces with ideals. *Trans. A. Razmadze Math. Inst.*, 172 (2018) 491-497.
- [9] Islam, Md. M. and Modak, S., Operator associated with the * and Ψ operators. J. Taibah Univ. Sci., 12(4) (2018) 444-449.
- [10] Islam, Md. M. and Modak, S., Second approximation of local functions in ideal topological spaces. Acta Comment. Univ. Tartu. Math., 22(2) (2018) 245-256.
- [11] Ekici, E. and Elmali, O., On Decompositions via Generalized Closedness in Ideal Spaces. *Filomat*, 29(4) (2015) 879-886.

- [12] Modak, S. and Mistry, S., Ideal on supra topological space. *Int. Journal of Math. Analysis*, 6(1) (2012) 1-10.
- [13] Khan, M., and Noiri, T., Semi-local functions in ideal topological spaces. J. Adv. Res. Pure Math., 2(1) (2010) 36-42.
- [14] Csaszar, A., Modification of generalized topologies via hereditary classes. *Acta Math. Hungar.*, 115(1-2) (2007) 29-36.
- [15] O zbakir, O.B. and Yildirim, E.D., On some closed sets in ideal minimal spaces. Acta Math. Hungar., 125(3) (2009) 227-235.
- [16] Hayashi, E., Topologies defined by local properties. Math. Ann., 156 (1964) 205-215.
- [17] Natkaniec, T., On I-continuity and I-semicontinuity points. Math. Slovaca, 36(3) (1986) 297-312
- [18] Hamlett, T.R. and Jankovic, D., Ideals in topological spaces and the set operator ψ . *Bull. U.M.I.*, 7(4-B) (1990) 863-874.
- [19] Modak, S. and Bandyopadhyay, C., A note on ψ operator. *Bull. Malyas. Math. Sci. Soc.*, 30(1) (2007) 43-48.
- [20] Csaszar, A., Generalized open sets. Acta Math. Hungar., 75(1-2) (1997) 65-87.
- [21] Popa V. and Noiri T., On M-continuous functions. Anal. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor. Fasc.II, 18(23) (2000) 31-41.
- [22] Mashhour, A.S., Allam, A.A., Mahmoud, F.S. and Khedr, F.H., On supra topological spaces. *Indian J. Pure and Appl. Math.*, 14(4) (1983) 502-510.
- [23] Newcomb, R.L., Topologies which are compact modulo an ideal. Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, (1967).
- [24] Njastad, O., Remarks on topologies defined by local properties. Norske Vid-Akad. Oslo (N.S), 8 (1966) 1-16.
- [25] Pavlovic, A., Local function versus local closure function in ideal topological spaces. *Filomat*, 30(14) (2016) 3725-3731.
- [26] Dontchev, J., Ganster M., Rose D., Ideal resolvability. Topology Appl., 93 (1999) 1-16.
- [27] Dontchev, J., Idealization of Ganster-Reilly decomposition theorems. *arXIV*, *Math. Gn/9901017VI*, (1999).
- [28] Modak, S., Some new topologies on ideal topological spaces. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 82(3) (2012) 233-243.
- [29] Bandyopadhyay, C. and Modak, S., A new topology via ψ operator. *Proc. Natl. Acad. Sci., India, Sect.* A *Phys. Sci.*, 76(2006) 17-20.
- [30] Jankovic, D. and Hamlett, T.R., New topologies from old via ideals. *Amer. Math. Monthly*, 97(1990) 295-310.
- [31] Levine, N., Semi-open sets and semi-continuity in topological spaces. *Amer. Math. Monthly*, 70 (1963) 36-41.
- [32] Mashhour, A.S., El-Monsef, M.E.A. and El-Deeb, S.N., On precontinuous and week precontinuous mappings. *Proc. Math. Phys. Soc. Egypt.*, 53 (1982) 47-53.
- [33] Andrijevic, D., Semi-preopen sets. Math. Vesnik, 38 (1986) 24-32.
- [34] El-Monsef, M.E.A., El-Deeb, S.N. and Mahmoud, R.A., β -open sets and β -continuous mappings. *Bull. Fac. Sci., Assiut Univ.* 12 (1983) 77-90.
- [35] Andrijevic, D., On b-open sets. Mat. Vesnik., 48 (1996) 59-64.