Research Article
BibTex RIS Cite

Multiplicative Mappings of Gamma Rings

Year 2019, , 838 - 845, 31.12.2019
https://doi.org/10.17776/csj.592101

Abstract

Let Mi and Γi (i = 1, 2) be abelian groups such that Mi is a Γi-ring.
An ordered pair (ϕ, φ) of mappings is called a multiplicative isomorphism
of M1 onto M2 if they satisfy the following properties: (i) ϕ is a bijective
mapping from M1 onto M2, (ii) φ is a bijective mapping from Γ1 onto
Γ2 and (iii) ϕ(xγy) = ϕ(x)φ(γ)ϕ(y) for every x, y ∈ M1 and γ ∈ Γ1. We
say that the ordered pair (ϕ, φ) of mappings is additive when ϕ(x + y) =
ϕ(x) + ϕ(y), for all x, y ∈ M1. In this paper we establish conditions on
M1 that assures that (ϕ, φ) is additive.

References

  • [1] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1 (1964) 81-89.
  • [2] W. E. Barnes, On the gamma Nobusawa, Pacific J. Math., 18 (1966) 411-422.
  • [3] M.R. Hestenes, On a ternary algebra, Scripta Math., 29 (1973) 253-272.
  • [4] O. Loos, Assoziative Triplesysteme, Manuscripta Math., 7 (1972) 103-112.
  • [5] W.G. Lister, Ternary rings, Trans. Amer. Math. Soc., 154 (1971) 37-55.
  • [6] R. N. Mukherjee Some results on Γ-rings, Indian J. pure appl. Math., 34 (2003) 991-994 . [7] S. Kyuno, On prime gamma rings, Pacific J. Math., 75 (1978) 185-190.
  • [8] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc., 21 (1969) 695-698.
  • [9] B. L. M. Ferreira, Multiplicative derivation of gamma rings, Algebra, Groups and Geometries, 34 (2017) 401-406.
  • [10] B. L. M. Ferreira, Additivity of elementary maps on gamma ring, Extracta Mathematicae, 34 (2019) 61-76.
Year 2019, , 838 - 845, 31.12.2019
https://doi.org/10.17776/csj.592101

Abstract

References

  • [1] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1 (1964) 81-89.
  • [2] W. E. Barnes, On the gamma Nobusawa, Pacific J. Math., 18 (1966) 411-422.
  • [3] M.R. Hestenes, On a ternary algebra, Scripta Math., 29 (1973) 253-272.
  • [4] O. Loos, Assoziative Triplesysteme, Manuscripta Math., 7 (1972) 103-112.
  • [5] W.G. Lister, Ternary rings, Trans. Amer. Math. Soc., 154 (1971) 37-55.
  • [6] R. N. Mukherjee Some results on Γ-rings, Indian J. pure appl. Math., 34 (2003) 991-994 . [7] S. Kyuno, On prime gamma rings, Pacific J. Math., 75 (1978) 185-190.
  • [8] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc., 21 (1969) 695-698.
  • [9] B. L. M. Ferreira, Multiplicative derivation of gamma rings, Algebra, Groups and Geometries, 34 (2017) 401-406.
  • [10] B. L. M. Ferreira, Additivity of elementary maps on gamma ring, Extracta Mathematicae, 34 (2019) 61-76.
There are 9 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Bruno Ferreira 0000-0003-1621-8197

Ruth N. Ferreira

Publication Date December 31, 2019
Submission Date July 15, 2019
Acceptance Date November 4, 2019
Published in Issue Year 2019

Cite

APA Ferreira, B., & Ferreira, R. N. (2019). Multiplicative Mappings of Gamma Rings. Cumhuriyet Science Journal, 40(4), 838-845. https://doi.org/10.17776/csj.592101

Cited By