Research Article
BibTex RIS Cite
Year 2020, , 69 - 84, 22.03.2020
https://doi.org/10.17776/csj.538397

Abstract

References

  • [1] Dragomir, S.S., Pečarić, J. and Persson, L.E., Some inequalities of Hadamard type, Soochow J. Math., 21 (1995) 335-341.
  • [2] Dragomir, S.S. and Mond, B., Integral inequalities of Hadamard’s type for log-convex functions, Demonstration Math., 2 (1998) 354-364.
  • [3] Noor, M.A., Noor, K.I. and Awan, M.U., Some characterizations of harmonically log-convex functions, Proc. Jangjeon Math. Soc., 17(1) (2014) 51-61.
  • [4] Noor, M.A., Noor, K.I. and Awan, M.U., Some integral inequalities for harmonically logarithmic -convex functions, Preprint, (2014).
  • [5] Noor, M.A., Noor, K.I., Awan, M.U. and Khan, S., Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions, Appl. Math. Infor. Sci., 8(6) (2014).
  • [6] Noor, M.A., Noor, K.I., Awan, M.U. and Costache, S., Some integral inequalities for harmonically -convex functions, U. P. B. Sci. Bull., Series A., 77(1) (2015) 5-16.
  • [7] Sarikaya, M.Z., Saglam, A. and Yildirim, H., On some Hadamard-type inequalities for -convex functions, Jour. Math. Ineq., 2(3) (2008) 335-341.
  • [8] Sarikaya, M.Z., Set, E. and Ozdemir, M.E., On some new inequalities of Hadamard type involving -convex functions, Acta Math. Univ. Comenianae, 2 (2010) 265-272.
  • [9] Varosanec, S., On -convexity, Jour. Math. Anal. Appl., 326 (2007) 303-311.
  • [10] http://arxiv.org/abs/1303.6089, (25.03.2013).

First order derivatives new h.hadamard type ınequalities for harmonically h convex functions

Year 2020, , 69 - 84, 22.03.2020
https://doi.org/10.17776/csj.538397

Abstract

In this study, we derived a new integral identity for differentiable functions. However, we get new inequalities which is well known as Hermite-Hadamard (H-H) type by using the integral identity, which unifies the class of new and known harmonically convex functions. Moreover, in this study, the properties of first and second kind harmonically s-convex and harmonically s-Godunova-Levin functions are studied and some special cases are also dealt. Some important inferences are made at this study for supporting the results that obtained for classes of harmonically convex functions in previous studies. 

References

  • [1] Dragomir, S.S., Pečarić, J. and Persson, L.E., Some inequalities of Hadamard type, Soochow J. Math., 21 (1995) 335-341.
  • [2] Dragomir, S.S. and Mond, B., Integral inequalities of Hadamard’s type for log-convex functions, Demonstration Math., 2 (1998) 354-364.
  • [3] Noor, M.A., Noor, K.I. and Awan, M.U., Some characterizations of harmonically log-convex functions, Proc. Jangjeon Math. Soc., 17(1) (2014) 51-61.
  • [4] Noor, M.A., Noor, K.I. and Awan, M.U., Some integral inequalities for harmonically logarithmic -convex functions, Preprint, (2014).
  • [5] Noor, M.A., Noor, K.I., Awan, M.U. and Khan, S., Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions, Appl. Math. Infor. Sci., 8(6) (2014).
  • [6] Noor, M.A., Noor, K.I., Awan, M.U. and Costache, S., Some integral inequalities for harmonically -convex functions, U. P. B. Sci. Bull., Series A., 77(1) (2015) 5-16.
  • [7] Sarikaya, M.Z., Saglam, A. and Yildirim, H., On some Hadamard-type inequalities for -convex functions, Jour. Math. Ineq., 2(3) (2008) 335-341.
  • [8] Sarikaya, M.Z., Set, E. and Ozdemir, M.E., On some new inequalities of Hadamard type involving -convex functions, Acta Math. Univ. Comenianae, 2 (2010) 265-272.
  • [9] Varosanec, S., On -convexity, Jour. Math. Anal. Appl., 326 (2007) 303-311.
  • [10] http://arxiv.org/abs/1303.6089, (25.03.2013).
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Natural Sciences
Authors

Merve Kule 0000-0001-8144-7768

Mehmet Eyüp Kiriş 0000-0001-8144-7768

Publication Date March 22, 2020
Submission Date March 11, 2019
Acceptance Date June 27, 2019
Published in Issue Year 2020

Cite

APA Kule, M., & Kiriş, M. E. (2020). First order derivatives new h.hadamard type ınequalities for harmonically h convex functions. Cumhuriyet Science Journal, 41(1), 69-84. https://doi.org/10.17776/csj.538397