Research Article
BibTex RIS Cite

Harmonik sayıları içeren toplamlar için bazı denklikler

Year 2018, , 912 - 919, 24.12.2018
https://doi.org/10.17776/csj.462331

Abstract

Bu makalede harmonik sayıları ve ikinci mertebeden lineer dizilerin
terimlerini içeren toplamlar hakkında bazı denklikler gösterilmiştir.

References

  • [1] Granville A., The square of the Fermat quotient, Integers: Electronic Journal of Combinatorial Number Theory, 4 (2004) #A22.
  • [2] Kılıç E., Ömür N. and Türker Ulutaş Y., Alternating sums of the powers of Fibonacci and Lucas numbers, Miskolc Math. Notes, 12-1 (2011) 87-103.
  • [3] Kılıç E., Ömür N. and Türker Ulutaş, Y., Some finite sums involving generalized Fibonacci and Lucas numbers, Discrete Dynamics in Nature and Society, (2011) 1-11, doi:10.1155/2011/284261.
  • [4] Koparal S. and Ömür N., On congruences related to central binomial coefficients, harmonic and Lucas numbers, Turkish Journal of Mathematics, 40 (2016) 973-985.
  • [5] Melham R.S., Certain classes of finite sums that involve generalized Fibonacci and Lucas numbers, The Fibonacci Quarterly, 42-1 (2004) 47–54.
  • [6] Ömür N. and Koparal S., Some congruences related to harmonic numbers and the terms of the second order sequences, Mathematica Moravica, 20 (2016) 23-37.
  • [7] Sun Z.W., Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc., 140-2 (2012) 415-428.
  • [8] Sun Z.W. and Zhao L.L., Arithmetic theory of harmonic numbers (II), Colloq. Math., 130-1 (2013) 67-78.
  • [9] Wolstenholme J., On certain properties of prime numbers, Quart. J. Math., 5 (1862) 35-39.

Some Congruences for Sums Involving Harmonic Numbers

Year 2018, , 912 - 919, 24.12.2018
https://doi.org/10.17776/csj.462331

Abstract

In this paper, we establish some congruences involving sums with
harmonic numbers and the terms of second-order linear sequences.

References

  • [1] Granville A., The square of the Fermat quotient, Integers: Electronic Journal of Combinatorial Number Theory, 4 (2004) #A22.
  • [2] Kılıç E., Ömür N. and Türker Ulutaş Y., Alternating sums of the powers of Fibonacci and Lucas numbers, Miskolc Math. Notes, 12-1 (2011) 87-103.
  • [3] Kılıç E., Ömür N. and Türker Ulutaş, Y., Some finite sums involving generalized Fibonacci and Lucas numbers, Discrete Dynamics in Nature and Society, (2011) 1-11, doi:10.1155/2011/284261.
  • [4] Koparal S. and Ömür N., On congruences related to central binomial coefficients, harmonic and Lucas numbers, Turkish Journal of Mathematics, 40 (2016) 973-985.
  • [5] Melham R.S., Certain classes of finite sums that involve generalized Fibonacci and Lucas numbers, The Fibonacci Quarterly, 42-1 (2004) 47–54.
  • [6] Ömür N. and Koparal S., Some congruences related to harmonic numbers and the terms of the second order sequences, Mathematica Moravica, 20 (2016) 23-37.
  • [7] Sun Z.W., Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc., 140-2 (2012) 415-428.
  • [8] Sun Z.W. and Zhao L.L., Arithmetic theory of harmonic numbers (II), Colloq. Math., 130-1 (2013) 67-78.
  • [9] Wolstenholme J., On certain properties of prime numbers, Quart. J. Math., 5 (1862) 35-39.
There are 9 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Sibel Koparal

Neşe Ömür

Publication Date December 24, 2018
Submission Date September 21, 2018
Acceptance Date November 1, 2018
Published in Issue Year 2018

Cite

APA Koparal, S., & Ömür, N. (2018). Some Congruences for Sums Involving Harmonic Numbers. Cumhuriyet Science Journal, 39(4), 912-919. https://doi.org/10.17776/csj.462331