Research Article
BibTex RIS Cite

Effects of Different Doses of Biochar Applications on Yield and Nutrient Element Concentrations on Wheat Grown under Salt Stress

Year 2024, , 543 - 549, 30.09.2024
https://doi.org/10.17776/csj.1500231

Abstract

In the study, the effects of different doses of biochar applications on the yield and nutrient uptake of wheat grown under salt stress in greenhouse conditions were investigated. The study was conducted in 2 kg capacity plastic pots with three replications using a random plot design. In the study, salt doses were applied as 0 dS m-1, 6 dS m-1 and 12 dS m-1 (in the form of NaCl), and biochar doses (BC) were applied as 0%, 0.5%, 1% and 2% W/W. At the end of the study, the dry matter yield of wheat plant and sodium (Na), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), zinc (Zn), manganese (Mn), iron (Fe) and copper (Cu) concentrations were determined. Study results showed that BC applications increased the dry matter production of the plant, and the highest was obtained with 2% BC application at 6 6 dS m-1 salt dose, 1.85 g pot-1. However, due to increasing salt doses, BC applications had no effect on the phosphorus and potassium concentrations of the wheat plant, except for calcium, and decreases were determined in the average values. In the study, although all BC applications increased iron, zinc, manganese and copper concentrations compared to the control, when evaluated in terms of average values, decreases were detected in the microelement concentrations of the plant due to increasing salt doses

References

  • [1] U.S. Salinity Laboratory staff. Diagnosis and improvement of salina and alkali soils. U.S. Dept. Agric. Handb., (1954) 60.
  • [2] FAO, FAO Land and Plant Nutr. Manag. Serv., Available at: http://www.fao.org/ag/agl/agll/spush/. Retrieved: June 14, 2024.
  • [3] GDRS., (2011) General Directorate of Rural Services.
  • [4] Greenway H., Munns R., Mechanisms of salt tolerance in nonhallophytes, Ann. Rev. Plant Physiol., 31 (1980) 149-190.
  • [5] Mer R.K., Prajith P.K., Pandya D.H., Pandey A.N., Effect of salts on germination of seeds and growth of young plants of Hordeum vulgare, Triticum aestivum, Cicer arietinum and Brassica juncea., J. Agron. Crop. Sci, 185 (2000) 209-217.
  • [6] Lehmann J., Gaunt J., Rondon M., Bio-char sequestration in terrestrial ecosystems—A review., Mitig. Adapt. Strateg. Glob. Change, 11(2) (2006) 403–427.
  • [7] Lehmann, J., Joseph, S., Biochar for environmental management: an introduction. In Biochar for environmental management, Routledge. (2015) pp 1-13.
  • [8] Korkmaz H. E., Akgün M., Çelebi M. S., Korkmaz K., Fındık Zurufu ve Biyoçarından Üretilen Demir Nanopartiküllerinin (FeONP) Yaşlanmış Börülce Tohumlarında Çimlenme Üzerine Etkisi, Akademik Ziraat Dergisi, 12(Special Issue) (2023) 193-202.
  • [9] Lorenz K., Lal R., Biochar application to soil for climate change mitigation by soil organic carbon sequestration, Journal of Plant Nut. and Soil Sci., 177 (2014) 651-670.
  • [10] Spokas K.A., Cantrell K.B., Novak J.M., Archer D.W., Ippolit, J.A., Collins H.P., Boateng A.A., Lima I.M., Lamb M.C., McAloon A.J., Lentz R.D., Nichols K.A., Biochar: a synthesis of its agronomic impact beyond carbon sequestration, J. Environ. Qual., 41 (2012) 973–989.
  • [11] Kloss S., Zehetner F., Wimmer B., Buecker J., Rempt F., Soja G., Biochar application to temperate soils: Effects on soil fertility and crop growth under greenhouse conditions, J. Plant Nutr. Soil Sci., 177 (2014) 3–15.
  • [12] Murphy L., Riley J.P., A modified single solution method for the determination of phosphate in natural waters, Anal. Chem. Acta., 27 (1962) 31-36.
  • [13] Kacar B., Inal A., Plant analysis, Nobel Pres 1241 (2008) 891.
  • [14] Bremner J.M., Total nitrogen Methods of soil analysis: part 2 chemical and microbiological properties, Madison, 9 (1965) 1149-1178.
  • [15] Anwar T., Munwwar F., Qureshi H., Siddiqi E. H., Hanif A., Anwaar S., Kamal A., Synergistic effect of biochar-based compounds from vegetable wastes and gibberellic acid on wheat growth under salinity stress, Scien. Rep., 13(1) (2023) 19024.
  • [16] Soliman M.H., Alnusairi G.S., Khan A.A., Alnusaire T.S., Fakhr M.A., Abdulmajeed A.M., Najeeb U., Biochar and selenium nanoparticles induce water transporter genes for sustaining carbon assimilation and grain production in salt-stressed wheat, Journal of Plant Grow. Reg., 42(3) (2023) 1522-1543.
  • [17] Lazof D. B., Bernstein N., The NaCl induced inhibition of shoot growth: the case for disturbed nutrition with special consideration of calcium, Adv. Bot. Res., 29 (1998) 113-189.
  • [18] Munns R., Genes and salt tolerance:bringing them together, New Phy., 167 (2005) 645-663.
  • [19] Levitt J., Responses of plants to environmental stresses. Vol. II, 2 ed. Academic Press, New York, (1980) 607.
  • [20] Aşıklı S., Tuz stresinin çeşitli Triticum Spelta Buğdaylarında Antioksidatif Enzim Aktiviteleri Üzerine Etkisi, Yüksek Lisans tezi, Ç.Ü. Fen Bilimleri Enstitüsü, Toprak Bilimi ve Bitki Besleme Anabilim Dalı, (2017).
  • [21] Moons A., Bauw G., Prinsen E., Montagu M.V., Van der Straeten, D., Molecular and physiological responses to absisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties, Plant Phy., 107(1) (1995) 177-186.
  • [22] Eker S., Cömertpay G., Konuşkan Ö., Ülger A. C., Öztürk L., Cakmak İ., Effect of salinity on Dry Mattrer Production and Ion Accumulation in Hybrid Maize Varieties, Turk J. Agric. For., 30 (2006) 365-373.
  • [23] Malik L., Sanaullah M., Mahmood F., Hussain S., Shahzad T., Co-application of biochar and salt tolerant PGPR to improve soil quality and wheat production in a naturally saline soil, Rhizosphere, 29 (2024) 100849.
  • [24] Davenport R.J., Reid R.J., Smith F.A., Sodium calcium interactions in two wheat spcies differing in salinity tolerance, Phys. Pla., 99 (1997) 323-327.
  • [25] Clarkson D.T., Hanson J.B., The Mineral Nutrition of Higher Plants, Ann. Rev. Plant Physiol., 31 (1980) 239-298.
  • [26] Epstein E., Genetic Engineering of Osmoregulation. Impact of Plant Productivity for Food, Chem. and En., (1981) 7-21
  • [27] Hafez E.M., Omara A.E., Alhumaydhi F.A., El-Esawi M.A., Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar, Physiol. Plant, 172 (2020) 587–602.
  • [28] Ali A., Ahmed I., Zaman B., Salim M., Nutritional effect of calcium on growth and ionic concentration of wheat under saline conditions, Pak. J. Agri. Sci., 39 (2002) 1-7.
  • [29] Netondo G.W., Onyango J. C., Beck E.I., Sorghum and salinity: Response of growth, water relations, and ion accumulation to NaCl salinity, Crop. Sci., 44 (2004) 707-710.
  • [30] Yetişir H., Uygur V., Plant growth and mineral element content of different gourd species and watermelon under salinity stress, Turk J. Agric. For., 33 (2009) 65-77.
  • [31] Turhan A., Seniz V., Kuşcu H., Genotypic variation in the response of tomato to salinity, Afr. J. Biotec., 8(6) (2009) 1062-1068.
  • [32] Marchner H., Mineral Nutrition of Higher Plants, Academic Press, (1995) 657-680.
  • [33] Torun A.A., Gülmezoğlu N., Tolay İ., Duymuş E., Aytaç Z., Cenkseven Ş., Torun B., Çinko ve NaCl Uygulamalarının Makarnalık Buğdayın (Triticum durum Desf.) Kuru Madde Verimi ve Besin Elementi Konsantrasyonları Üzerine Etkisi, Bahri Dağ. Bit. Araş. Der., 8(1) (2019) 1-10.
  • [34] Korkmaz K., Akgün M., Kırlı A., Özcan M.M., Dede Ö., Kara Ş. M., Effects of gibberellic acid and salicylic acid applications on some physical and chemical properties of rapeseed (Brassica napus L.) grown under salt stress, Turk. Jour. of Agr.-Food Sci. and Tech., 8(4) (2020) 873-881.
  • [35] Dinler B.S., Cetinkaya H., Akgun M., Korkmaz, K., Simultaneous treatment of different gibberellic acid doses induces ion accumulation and response mechanisms to salt damage in maize roots, Jour. of Plant Bioc. and Phy., 9(3) (2021) 258.
  • [36] Aha F. D., Özkutlu F., Tuzlu Koşullarda Bentonit Uygulamasının Makarnalık ve Ekmeklik Buğdayların Kuru Madde Verimi ve Mineral Besin Elementleri Üzerine Etkisi, Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 13(1) (2023) 71-78.
Year 2024, , 543 - 549, 30.09.2024
https://doi.org/10.17776/csj.1500231

Abstract

References

  • [1] U.S. Salinity Laboratory staff. Diagnosis and improvement of salina and alkali soils. U.S. Dept. Agric. Handb., (1954) 60.
  • [2] FAO, FAO Land and Plant Nutr. Manag. Serv., Available at: http://www.fao.org/ag/agl/agll/spush/. Retrieved: June 14, 2024.
  • [3] GDRS., (2011) General Directorate of Rural Services.
  • [4] Greenway H., Munns R., Mechanisms of salt tolerance in nonhallophytes, Ann. Rev. Plant Physiol., 31 (1980) 149-190.
  • [5] Mer R.K., Prajith P.K., Pandya D.H., Pandey A.N., Effect of salts on germination of seeds and growth of young plants of Hordeum vulgare, Triticum aestivum, Cicer arietinum and Brassica juncea., J. Agron. Crop. Sci, 185 (2000) 209-217.
  • [6] Lehmann J., Gaunt J., Rondon M., Bio-char sequestration in terrestrial ecosystems—A review., Mitig. Adapt. Strateg. Glob. Change, 11(2) (2006) 403–427.
  • [7] Lehmann, J., Joseph, S., Biochar for environmental management: an introduction. In Biochar for environmental management, Routledge. (2015) pp 1-13.
  • [8] Korkmaz H. E., Akgün M., Çelebi M. S., Korkmaz K., Fındık Zurufu ve Biyoçarından Üretilen Demir Nanopartiküllerinin (FeONP) Yaşlanmış Börülce Tohumlarında Çimlenme Üzerine Etkisi, Akademik Ziraat Dergisi, 12(Special Issue) (2023) 193-202.
  • [9] Lorenz K., Lal R., Biochar application to soil for climate change mitigation by soil organic carbon sequestration, Journal of Plant Nut. and Soil Sci., 177 (2014) 651-670.
  • [10] Spokas K.A., Cantrell K.B., Novak J.M., Archer D.W., Ippolit, J.A., Collins H.P., Boateng A.A., Lima I.M., Lamb M.C., McAloon A.J., Lentz R.D., Nichols K.A., Biochar: a synthesis of its agronomic impact beyond carbon sequestration, J. Environ. Qual., 41 (2012) 973–989.
  • [11] Kloss S., Zehetner F., Wimmer B., Buecker J., Rempt F., Soja G., Biochar application to temperate soils: Effects on soil fertility and crop growth under greenhouse conditions, J. Plant Nutr. Soil Sci., 177 (2014) 3–15.
  • [12] Murphy L., Riley J.P., A modified single solution method for the determination of phosphate in natural waters, Anal. Chem. Acta., 27 (1962) 31-36.
  • [13] Kacar B., Inal A., Plant analysis, Nobel Pres 1241 (2008) 891.
  • [14] Bremner J.M., Total nitrogen Methods of soil analysis: part 2 chemical and microbiological properties, Madison, 9 (1965) 1149-1178.
  • [15] Anwar T., Munwwar F., Qureshi H., Siddiqi E. H., Hanif A., Anwaar S., Kamal A., Synergistic effect of biochar-based compounds from vegetable wastes and gibberellic acid on wheat growth under salinity stress, Scien. Rep., 13(1) (2023) 19024.
  • [16] Soliman M.H., Alnusairi G.S., Khan A.A., Alnusaire T.S., Fakhr M.A., Abdulmajeed A.M., Najeeb U., Biochar and selenium nanoparticles induce water transporter genes for sustaining carbon assimilation and grain production in salt-stressed wheat, Journal of Plant Grow. Reg., 42(3) (2023) 1522-1543.
  • [17] Lazof D. B., Bernstein N., The NaCl induced inhibition of shoot growth: the case for disturbed nutrition with special consideration of calcium, Adv. Bot. Res., 29 (1998) 113-189.
  • [18] Munns R., Genes and salt tolerance:bringing them together, New Phy., 167 (2005) 645-663.
  • [19] Levitt J., Responses of plants to environmental stresses. Vol. II, 2 ed. Academic Press, New York, (1980) 607.
  • [20] Aşıklı S., Tuz stresinin çeşitli Triticum Spelta Buğdaylarında Antioksidatif Enzim Aktiviteleri Üzerine Etkisi, Yüksek Lisans tezi, Ç.Ü. Fen Bilimleri Enstitüsü, Toprak Bilimi ve Bitki Besleme Anabilim Dalı, (2017).
  • [21] Moons A., Bauw G., Prinsen E., Montagu M.V., Van der Straeten, D., Molecular and physiological responses to absisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties, Plant Phy., 107(1) (1995) 177-186.
  • [22] Eker S., Cömertpay G., Konuşkan Ö., Ülger A. C., Öztürk L., Cakmak İ., Effect of salinity on Dry Mattrer Production and Ion Accumulation in Hybrid Maize Varieties, Turk J. Agric. For., 30 (2006) 365-373.
  • [23] Malik L., Sanaullah M., Mahmood F., Hussain S., Shahzad T., Co-application of biochar and salt tolerant PGPR to improve soil quality and wheat production in a naturally saline soil, Rhizosphere, 29 (2024) 100849.
  • [24] Davenport R.J., Reid R.J., Smith F.A., Sodium calcium interactions in two wheat spcies differing in salinity tolerance, Phys. Pla., 99 (1997) 323-327.
  • [25] Clarkson D.T., Hanson J.B., The Mineral Nutrition of Higher Plants, Ann. Rev. Plant Physiol., 31 (1980) 239-298.
  • [26] Epstein E., Genetic Engineering of Osmoregulation. Impact of Plant Productivity for Food, Chem. and En., (1981) 7-21
  • [27] Hafez E.M., Omara A.E., Alhumaydhi F.A., El-Esawi M.A., Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar, Physiol. Plant, 172 (2020) 587–602.
  • [28] Ali A., Ahmed I., Zaman B., Salim M., Nutritional effect of calcium on growth and ionic concentration of wheat under saline conditions, Pak. J. Agri. Sci., 39 (2002) 1-7.
  • [29] Netondo G.W., Onyango J. C., Beck E.I., Sorghum and salinity: Response of growth, water relations, and ion accumulation to NaCl salinity, Crop. Sci., 44 (2004) 707-710.
  • [30] Yetişir H., Uygur V., Plant growth and mineral element content of different gourd species and watermelon under salinity stress, Turk J. Agric. For., 33 (2009) 65-77.
  • [31] Turhan A., Seniz V., Kuşcu H., Genotypic variation in the response of tomato to salinity, Afr. J. Biotec., 8(6) (2009) 1062-1068.
  • [32] Marchner H., Mineral Nutrition of Higher Plants, Academic Press, (1995) 657-680.
  • [33] Torun A.A., Gülmezoğlu N., Tolay İ., Duymuş E., Aytaç Z., Cenkseven Ş., Torun B., Çinko ve NaCl Uygulamalarının Makarnalık Buğdayın (Triticum durum Desf.) Kuru Madde Verimi ve Besin Elementi Konsantrasyonları Üzerine Etkisi, Bahri Dağ. Bit. Araş. Der., 8(1) (2019) 1-10.
  • [34] Korkmaz K., Akgün M., Kırlı A., Özcan M.M., Dede Ö., Kara Ş. M., Effects of gibberellic acid and salicylic acid applications on some physical and chemical properties of rapeseed (Brassica napus L.) grown under salt stress, Turk. Jour. of Agr.-Food Sci. and Tech., 8(4) (2020) 873-881.
  • [35] Dinler B.S., Cetinkaya H., Akgun M., Korkmaz, K., Simultaneous treatment of different gibberellic acid doses induces ion accumulation and response mechanisms to salt damage in maize roots, Jour. of Plant Bioc. and Phy., 9(3) (2021) 258.
  • [36] Aha F. D., Özkutlu F., Tuzlu Koşullarda Bentonit Uygulamasının Makarnalık ve Ekmeklik Buğdayların Kuru Madde Verimi ve Mineral Besin Elementleri Üzerine Etkisi, Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 13(1) (2023) 71-78.
There are 36 citations in total.

Details

Primary Language English
Subjects Plant Physiology
Journal Section Natural Sciences
Authors

Halil Göktan Demirbaş 0009-0006-0195-7703

Osman Sönmez 0000-0002-9134-6466

Ahmet Demirbaş 0000-0003-2523-7322

Fatma Nur Kılıç 0000-0003-3498-2455

Publication Date September 30, 2024
Submission Date June 12, 2024
Acceptance Date September 23, 2024
Published in Issue Year 2024

Cite

APA Demirbaş, H. G., Sönmez, O., Demirbaş, A., Kılıç, F. N. (2024). Effects of Different Doses of Biochar Applications on Yield and Nutrient Element Concentrations on Wheat Grown under Salt Stress. Cumhuriyet Science Journal, 45(3), 543-549. https://doi.org/10.17776/csj.1500231