Research Article
BibTex RIS Cite

Study on Electrical, Thermal, Magnetic Properties and Microstructure for - Al, -Al2Cu, ω-Al7Cu2Fe Phases in Al-32.5 wt. % Cu-1 wt. % Fe Ternary Alloy

Year 2023, , 785 - 792, 28.12.2023
https://doi.org/10.17776/csj.1349226

Abstract

The electrical properties of the Al-32.5 wt. % Cu-1 wt. % Fe ternary alloy were examined, it was observed that the electrical resistivity increased depending on the temperature and it was found as 6.8546x10-8 Ωm - 5.7780x10-7Ωm in the temperature range of 298-810K. The thermal conductivity was calculated using electrical measurement results and it was observed that it decreased depending on the temperature. The ternary alloy (cubic -Al, Fm-3m, 225 a = 4.0480 Å, -tetragonal Al2Cu, I4mcm, 140, a=6.0654 Å c=4.8732 Å, ω-tetragonal Al7Cu2Fe, P4 /mnc, 128, a = 6.3360 Å, m and c = 14.87 Å) phases were obtained. In this ternary alloy, phases were clearly seen in XRD studies and EDAX analyzes at room temperature. Magnetic properties such as magnetic transition temperature and magnetization curves of the alloy were determined.

References

  • [1] Travessa D.N., Cardoso K.R.,Wolf W., Jr. Jorge A.M., Botta W.J., The Formation of Quasicrystal Phase inn Al-Cu-Fe System by Mechanical Alloying Materials Research, 15 (5) ( 2012) 749-752.
  • [2] Školáková A., Novák P., Mejzliková L., Prŭsa F., Salvetr P., Vojtěch D., Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability, Materials (Basel) NOV., 10 (11) (2017) 1269.
  • [3] Huttunen-Saarivirta E., Microstructure, fabrication and properties of quasicrystalline Al–Cu–Fe alloys: A review., J. Alloy. Compd., 363 (2004) 154–178.
  • [4] Biswas K., and Chattopadhyay K., Formation of w-Al7Cu2Fe phase during laser processing of quasicrystal-forming Al-Cu-Fe alloy, Philosophical Magazine Letters, 88 3 (2008) 219-230.
  • [5] Tsai A.P., Inoue A. and Masumoto T., A.Stable Quasicrystal in Al-Cu-Fe System, Jap. J. appl. Phys., 26 (9) (1987) L1505-L1507.
  • [6] Liu W. and Köster U., Decomposition of the icosahedral phase in AlCuFe alloys, Mater. Sci. Engng A, 133 (1991) 388-392.
  • [7] Gayle F.W., Shapiro A.J., Boancaniello F.S., et al., The Al-Cu-Fe phase diagram: 0 to 25 At. pct Fe and 50 to 75 At. Pct Al — Equilibria Involving the Icosahedral Phase, Metall. Trans. A, 23 (1992) 2409-2417.
  • [8] Gratias D., Calvayrac Y., Devaud-Rzepski J., et al., Phase diagram and structures of the ternary AlCuFe system in the vicinity of the icosahedral region, J. Non-Crystalline Solids 153–154 (1993) 482-488.
  • [9] Grushko B., Wittenberg R. and Holland-Moritz D., Solidification of Al–Cu–Fe alloys forming icosahedral phase, J. Mater. Res, 11 (1996) 2177-2185.
  • [10] Gui J., Wang J., Wang R., et al., On some discrepancies in the literature about the formation of icosahedral quasi-crystal in Al–Cu–Fe alloys, J. Mater. Res, 16 (2001) 1037-1046.
  • [11] Rosas G. and Perez R., On the transformations of the ψ-AlCuFe icosahedral phase, Mater. Lett, 47 (2001) 225-230.
  • [12] Zhang L. and Lück R., Z., Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system, Metallkd, 94 (2003) 91-97.
  • [13] Auderbert F., Colaço R., Viller R., et al., Laser cladding of aluminium-base quasicrystalline alloys, Scripta Mater, 40 (1999) 551-557.
  • [14] Biswas K., Galun R., Mordike B.L., et al., Laser cladding of quasicrystal forming Al–Cu–Fe on aluminum, J. Non-Crystalline Solids, 334–335 (2004) 517.
  • [15] Zahoor A., Nawaz Shahid R., Tariq N.H., Wahab H., Anwar S., Rafiq M.A., Ameer A., Izhar S., Ali F., Hasan B.A., Effect on electrical and magnetic behavior of Al-Cu-Fe quasicrystals during surface leaching, Applied Physics A, (2021) 127, 551.
  • [16] Yin S, Xie Z, Bian Q, He B, Pan Z, Sun Z et al., Formation of AlCuFe icosahedral quasicrystal by mechanical alloying: XAFS and XRD studies. Journal of Alloys and Compounds, 455 (1-2) (2008) 314-321.
  • [17] Willey L.A., Metallography, Structures and Phase Diagrams, Vol.8, Metals Handbook 8th ed., American Society for Metals, Metals Park, OH. (1973)
  • [18] Prevarskiy A.P., Investigation of Fe-Cu-Al Alloys, Russ. Metall. TR:Izv.Akad. Nauk SSSR, Metall., 4 (1971) 154-156.
  • [19] Yuan G.C., Influence of silicon content on friction and wear characteristics of new Al-Sn-Si alloys, Chin. J. Nonferrous Metals, 8 (9) (1998) 101-105.
  • [20]Rudnev V., Loveless D., Cook R., Black M., Handbook of Induction Heating. Markel Dekker Inc, New York, (2003) 119-120.
  • [21] Ari M., Saatçi B., Gündüz M., Payveren M., Durmus S., Thermo-electrical characterization of Sn-Zn alloys, Mater. Char., 59 (2008) 757-763.
  • [22] Zhou D.J., Study on Al-Sn-Si-Cu bearing alloy, J. Light Alloy Fabr. Technol., 28 (5) (2000) 44-46.
  • [23]Yamasue, E., Susa, M., Fukuyama, H., Nagata, K., Deviation from Wiedemann-Franz law for the thermal conductivity of liquid tin and lead at elevated temperature., Int. J. Thermophys. 24 (2003) 713-730.
  • [24]Sergent, E.J., Krum, A., Thermal management handbook: for electronic assemblies. 1 edition, McGraw-Hill Professional: New York, (1998) 26.
  • [25]Bandyopadhyay, A. Dutta, Thermal, optical and dielectric properties of phase stabilized δ – Dy–Bi2O3 ionic conductors, J. Phys. Chem. Solids, 102 (2015) 12–20.
  • [26]Böyük U., Maraşlı N., Çadırlı E., Kaya H., Keşlioğlu K., Variations of microhardness with solidification parameters and electrical resistivity with temperature for Al-Cu-Ag eutecitc alloy., Current Applied Physics 12 (2012) 7-10.
  • [27] Kaya H., Dependence of electrical resistivity ontemperature and composition of Al–Cu alloys, Materials Research Innovations, 16 (3) (2012) 224-229.
  • [28]Çadırlı E., Böyük U., Engin S., Kaya H., Effect of silicon on microstructure, mechanical and electrical properties of the directionally solidified Al-based quaternary alloys, J. Alloys and Comp., 694 (2017) 471-479.
  • [29]Youjun Z., Mingqiang H., Guangtao L., Chengwei Z., Vitali P.B., Eran G., Yingwei F., Jung-Fu L., Reconciliation of experiments and theory on transport properties of iron and the geodynamo. Phys. Rev. Lett 125 (2020) 0.78501.
  • [30]Touloukian Y.S., Powell R.W., Ho C.Y., Klemens P.G., Thermal Conductivity Metallic Elements and Alloys, vol. 1, New York, Washington, (1970) 60.
  • [31] Choi S.W.,Cho H.S. ,Kumai S., Effect of the precipitation of secondary phases on the thermal diffusivity and thermal conductivitiy of Al-4.5 Cu alloy, J.Alloys and Comp. 688 (2016) 897-902.
  • [32]Nguyen H. V. , Do N. B. , Nguyen T. H. O. , Nguyen C. S. , Trinh V. T. , Le H. T., Junior A. M. J., Synthesis and magnetic properties of Al–Cu–Fe quasicrystals prepared by mechanical alloying and heat treatment, J. of Materials Research, 38 (2023) 3 644-653.
  • [33]Oanha N. T. H., Vieta N. H., Dudina D. V., Jorge Jr A. M., Kimi Ji-Soon, Structural characterization and magnetic properties of Al82Fe16TM2 (TM: Ti, Ni, Cu) alloys prepared by mechanical alloying, J. of Non-Crystalline Solids, 468 (2017) 67-73.
  • [34]Li Z., Bai H. Y., Pan M. X., Zhao De Q., Wang W. L., Wang W. H., Formation, properties, thermal characteristics, and crystallization of hard magnetic Pr–Al–Fe–Cu bulk metallic glasses, J. Mater. Res., Vol. 18 (2003) 9 2208-2213.
Year 2023, , 785 - 792, 28.12.2023
https://doi.org/10.17776/csj.1349226

Abstract

References

  • [1] Travessa D.N., Cardoso K.R.,Wolf W., Jr. Jorge A.M., Botta W.J., The Formation of Quasicrystal Phase inn Al-Cu-Fe System by Mechanical Alloying Materials Research, 15 (5) ( 2012) 749-752.
  • [2] Školáková A., Novák P., Mejzliková L., Prŭsa F., Salvetr P., Vojtěch D., Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability, Materials (Basel) NOV., 10 (11) (2017) 1269.
  • [3] Huttunen-Saarivirta E., Microstructure, fabrication and properties of quasicrystalline Al–Cu–Fe alloys: A review., J. Alloy. Compd., 363 (2004) 154–178.
  • [4] Biswas K., and Chattopadhyay K., Formation of w-Al7Cu2Fe phase during laser processing of quasicrystal-forming Al-Cu-Fe alloy, Philosophical Magazine Letters, 88 3 (2008) 219-230.
  • [5] Tsai A.P., Inoue A. and Masumoto T., A.Stable Quasicrystal in Al-Cu-Fe System, Jap. J. appl. Phys., 26 (9) (1987) L1505-L1507.
  • [6] Liu W. and Köster U., Decomposition of the icosahedral phase in AlCuFe alloys, Mater. Sci. Engng A, 133 (1991) 388-392.
  • [7] Gayle F.W., Shapiro A.J., Boancaniello F.S., et al., The Al-Cu-Fe phase diagram: 0 to 25 At. pct Fe and 50 to 75 At. Pct Al — Equilibria Involving the Icosahedral Phase, Metall. Trans. A, 23 (1992) 2409-2417.
  • [8] Gratias D., Calvayrac Y., Devaud-Rzepski J., et al., Phase diagram and structures of the ternary AlCuFe system in the vicinity of the icosahedral region, J. Non-Crystalline Solids 153–154 (1993) 482-488.
  • [9] Grushko B., Wittenberg R. and Holland-Moritz D., Solidification of Al–Cu–Fe alloys forming icosahedral phase, J. Mater. Res, 11 (1996) 2177-2185.
  • [10] Gui J., Wang J., Wang R., et al., On some discrepancies in the literature about the formation of icosahedral quasi-crystal in Al–Cu–Fe alloys, J. Mater. Res, 16 (2001) 1037-1046.
  • [11] Rosas G. and Perez R., On the transformations of the ψ-AlCuFe icosahedral phase, Mater. Lett, 47 (2001) 225-230.
  • [12] Zhang L. and Lück R., Z., Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system, Metallkd, 94 (2003) 91-97.
  • [13] Auderbert F., Colaço R., Viller R., et al., Laser cladding of aluminium-base quasicrystalline alloys, Scripta Mater, 40 (1999) 551-557.
  • [14] Biswas K., Galun R., Mordike B.L., et al., Laser cladding of quasicrystal forming Al–Cu–Fe on aluminum, J. Non-Crystalline Solids, 334–335 (2004) 517.
  • [15] Zahoor A., Nawaz Shahid R., Tariq N.H., Wahab H., Anwar S., Rafiq M.A., Ameer A., Izhar S., Ali F., Hasan B.A., Effect on electrical and magnetic behavior of Al-Cu-Fe quasicrystals during surface leaching, Applied Physics A, (2021) 127, 551.
  • [16] Yin S, Xie Z, Bian Q, He B, Pan Z, Sun Z et al., Formation of AlCuFe icosahedral quasicrystal by mechanical alloying: XAFS and XRD studies. Journal of Alloys and Compounds, 455 (1-2) (2008) 314-321.
  • [17] Willey L.A., Metallography, Structures and Phase Diagrams, Vol.8, Metals Handbook 8th ed., American Society for Metals, Metals Park, OH. (1973)
  • [18] Prevarskiy A.P., Investigation of Fe-Cu-Al Alloys, Russ. Metall. TR:Izv.Akad. Nauk SSSR, Metall., 4 (1971) 154-156.
  • [19] Yuan G.C., Influence of silicon content on friction and wear characteristics of new Al-Sn-Si alloys, Chin. J. Nonferrous Metals, 8 (9) (1998) 101-105.
  • [20]Rudnev V., Loveless D., Cook R., Black M., Handbook of Induction Heating. Markel Dekker Inc, New York, (2003) 119-120.
  • [21] Ari M., Saatçi B., Gündüz M., Payveren M., Durmus S., Thermo-electrical characterization of Sn-Zn alloys, Mater. Char., 59 (2008) 757-763.
  • [22] Zhou D.J., Study on Al-Sn-Si-Cu bearing alloy, J. Light Alloy Fabr. Technol., 28 (5) (2000) 44-46.
  • [23]Yamasue, E., Susa, M., Fukuyama, H., Nagata, K., Deviation from Wiedemann-Franz law for the thermal conductivity of liquid tin and lead at elevated temperature., Int. J. Thermophys. 24 (2003) 713-730.
  • [24]Sergent, E.J., Krum, A., Thermal management handbook: for electronic assemblies. 1 edition, McGraw-Hill Professional: New York, (1998) 26.
  • [25]Bandyopadhyay, A. Dutta, Thermal, optical and dielectric properties of phase stabilized δ – Dy–Bi2O3 ionic conductors, J. Phys. Chem. Solids, 102 (2015) 12–20.
  • [26]Böyük U., Maraşlı N., Çadırlı E., Kaya H., Keşlioğlu K., Variations of microhardness with solidification parameters and electrical resistivity with temperature for Al-Cu-Ag eutecitc alloy., Current Applied Physics 12 (2012) 7-10.
  • [27] Kaya H., Dependence of electrical resistivity ontemperature and composition of Al–Cu alloys, Materials Research Innovations, 16 (3) (2012) 224-229.
  • [28]Çadırlı E., Böyük U., Engin S., Kaya H., Effect of silicon on microstructure, mechanical and electrical properties of the directionally solidified Al-based quaternary alloys, J. Alloys and Comp., 694 (2017) 471-479.
  • [29]Youjun Z., Mingqiang H., Guangtao L., Chengwei Z., Vitali P.B., Eran G., Yingwei F., Jung-Fu L., Reconciliation of experiments and theory on transport properties of iron and the geodynamo. Phys. Rev. Lett 125 (2020) 0.78501.
  • [30]Touloukian Y.S., Powell R.W., Ho C.Y., Klemens P.G., Thermal Conductivity Metallic Elements and Alloys, vol. 1, New York, Washington, (1970) 60.
  • [31] Choi S.W.,Cho H.S. ,Kumai S., Effect of the precipitation of secondary phases on the thermal diffusivity and thermal conductivitiy of Al-4.5 Cu alloy, J.Alloys and Comp. 688 (2016) 897-902.
  • [32]Nguyen H. V. , Do N. B. , Nguyen T. H. O. , Nguyen C. S. , Trinh V. T. , Le H. T., Junior A. M. J., Synthesis and magnetic properties of Al–Cu–Fe quasicrystals prepared by mechanical alloying and heat treatment, J. of Materials Research, 38 (2023) 3 644-653.
  • [33]Oanha N. T. H., Vieta N. H., Dudina D. V., Jorge Jr A. M., Kimi Ji-Soon, Structural characterization and magnetic properties of Al82Fe16TM2 (TM: Ti, Ni, Cu) alloys prepared by mechanical alloying, J. of Non-Crystalline Solids, 468 (2017) 67-73.
  • [34]Li Z., Bai H. Y., Pan M. X., Zhao De Q., Wang W. L., Wang W. H., Formation, properties, thermal characteristics, and crystallization of hard magnetic Pr–Al–Fe–Cu bulk metallic glasses, J. Mater. Res., Vol. 18 (2003) 9 2208-2213.
There are 34 citations in total.

Details

Primary Language English
Subjects Material Physics
Journal Section Natural Sciences
Authors

Canan Alper Billur 0000-0002-6888-8013

Buket Saatçi 0000-0002-1351-5279

Publication Date December 28, 2023
Submission Date August 24, 2023
Acceptance Date November 24, 2023
Published in Issue Year 2023

Cite

APA Alper Billur, C., & Saatçi, B. (2023). Study on Electrical, Thermal, Magnetic Properties and Microstructure for - Al, -Al2Cu, ω-Al7Cu2Fe Phases in Al-32.5 wt. % Cu-1 wt. % Fe Ternary Alloy. Cumhuriyet Science Journal, 44(4), 785-792. https://doi.org/10.17776/csj.1349226