Research Article
BibTex RIS Cite
Year 2023, , 656 - 664, 28.12.2023
https://doi.org/10.17776/csj.1278533

Abstract

References

  • [1] Yaman Y., Enerji tasarrufu ve yenilenebilir enerji kaynakları. 1st Ed. İstanbul: Birsen Yayınevi, (2007) 17-20.
  • [2] Dinçer İ. and Rosen M.A., Thermal Energy Storage, Systems and Applications, 1st Ed. England: John Wiley & Sons, (2002) 23-26.
  • [3] Konuklu Y., Ersoy O., Paksoy H.Ö., Evcimen S., Çelik S. and Toraman Ö.Y., Termal enerji depolama materyali olarak diatomit/faz değiştiren madde kompozitlerinin üretilmesi, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6 (1) (2017) 238-243.
  • [4] Lucia U., Overview on fuel cells, Renewable and Sustainable Energy Reviews, 30 (2014) 164-169.
  • [5] Alkan, C., Thermal energy storage methods. In: Pielichowska K. and Pielichowski K. (Eds). Multifunctional Phase Change Materials. 1st ed. Amsterdam: Woodhead Publishing-Elsevier, (2023) 1-93.
  • [6] Gök Ö., Alkan C. and Konuklu Y., Developing a polyethylene glycol (PEG)/cellulose phase change composite for cooling application, 14th International Conference on Energy Storage-ENERSTOCK2018, Adana-Turkey, 2018, 999-1005.
  • [7] Stritih U., Zavrl E. and Paksoy H.O., Energy analysis and carbon saving potential of a complex heating system with solar assisted heat pump and phase change material (PCM) thermal storage in different climatic conditions, European Journal of Sustainable Development Research, 3 (1) (2019) Article No: em0067.
  • [8] Abhat A., Low temperature latent heat thermal energy storage: Heat storage materials, Solar Energy, 30 (4) (1983) 313-332.
  • [9] Zalba B., Marin J.M., Cabeza L.F. and Mehling H., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering, 23 (3) (2003) 251-283.
  • [10] Crespo A., Fernández C., Vérez D., Tarragona J., Borri E., Frazzica A., Cabeza L.F. and de Gracia A., Thermal performance assessment and control optimization of a solar-driven seasonal sorption storage system for residential application, Energy, 263 (2023) 125382.
  • [11] Navarro M., Diarce G., Lázaro A., Rojo A. and Delgado M., Comparative study on bubbling and shearing techniques for the crystallization of xylitol in TES systems, Results in Engineering, 17 (2023) 100909.
  • [12] Saraç E.G., Isıl düzenleme özelliği gösteren akıllı tekstil ürünlerinin geliştirilmesi ve performans özelliklerinin incelenmesi, PhD Thesis, Marmara University, Graduate School of Natural and Applied Sciences, 2020.
  • [13] Kuru A., Alay Aksoy S., Faz değiştiren maddeler ve tekstil uygulamaları, Journal of Textiles and Engineer, 19 (86) (2012) 41-48.
  • [14] Tözüm M.S., Alkan C. and Alay Aksoy S., Developing of thermal energy storing visual textile temperature indicators based on reversible color change, Journal of Industrial Textiles, 51 (2S) (2022) 1964S-1988S.
  • [15] Tözüm M.S., Alay Aksoy S. and Alkan C., Manufacturing surface active shell and bisphenol A free thermochromic acrylic microcapsules for textile applications, International Journal of Energy Research, 45 (2021) 7018-7037.
  • [16] Zhou Z., Wu X.F., Electrospinning superhydrophobic–superoleophilic fibrous PVDF membranes for high-efficiency water–oil separation, Materials and Letters, 160 (2015) 423-427.
  • [17] Gök Ö., Alkan C., Polivinil alkol (PVA) ile poli(etilen glikol) (PEG) 1000 karışımının elektro eğirilmiş lif oluşumunun incelenmesi ve ısıl enerji depolama uygulamalarında faz değişim maddesi (FDM) olarak kullanılması, 5th International Fiber and Polymer Research Symposium, İstanbul-Turkey, 2019, 44-45.
  • [18] Karatepe U.Y., Ozdemir T., Improving mechanical and antibacterial properties of PMMA via polyblend electrospinning with silk fibroin and polyethyleneimine towards dental applications, Bioactive Materials, 5 (2020) 510-515.
  • [19] Boz Noyan E.C., The development of heat storing nanocomposite nanofibers, Master Thesis, İstanbul Technical University (İTÜ), Graduate School of Science Engineering and Technology, 2015.
  • [20] Özmen G. and Alay Aksoy S., Eş eksenli elektro lif çekim yöntemi ile termal enerji depolama özellikli kompozit nanolif üretimi üzerine bir araştırma, Journal of Engineering Sciences and Design, 8 (4) (2020) 1248-1259.
  • [21] Liguori A., Pandini S., Rinoldi C., Zaccheroni N., Pierini F., Focarete M.L. and Gualandi C., Thermoactive smart electrospun nanofibers, Macromolecular Rapid Communications, (2022) 2100694.
  • [22] Liu H., Zhou F., Shi X., Sun K., Kou Y., Das P., Li Y., Zhang X., Mateti S., Chen Y., Wu Z.S., Shi Q., A thermoregulatory flexible phase change nonwoven for all season high efciency wearable thermal management, Nano-Micro Letters, 15 (29) (2023) 1-12.
  • [23] Li Z. and Yuan J., Phase change microcapsules with high encapsulation efficiency using Janus silica particles as stabilizers and their application in cement, Construction and Building Materials, 307 (2021) 124971.
  • [24] Taş C.E., Hybrid polymeric materials comprising clay nanotubes, photothermal agents and phase change materials for food, water and energy applications, PhD Thesis, Sabancı University, Graduate School of Engineering and Natural Sciences, 2021.
  • [25] Li M., Wu Z. and Tan J., Heat storage properties of the cement mortar incorporated with composite phase change material, Applied Energy, 103 (2013) 393-399.
  • [26] Okay Z., Poliakrilonitril liflerin kimyasal modifikasyonu ve modifiye edilmiş liflere gümüş parçacıkları çöktürülerek bazı özelliklerinin incelenmesi, Master Thesis, Ankara University, Graduate School of Natural and Applied Sciences, 2018.
  • [27] Puls J., Wilson S.A. and Hölter D., Degradation of cellulose acetate-based materials: A review, Journal of Polymers and the Environment, 19 (2011) 152-165.
  • [28] Wsoo M.A., Shahir S., Bohari S.P.M., Nayan N.H.M. and Abd Razak S.I., A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective, Carbohydrate Research, 491 (2020) 107978.
  • [29] Vatanpour V., Pasaoglu M.E., Barzegar H., Teber O.O., Kaya R., Bastug M., Khataee A. and Koyuncu I., Cellulose acetate in fabrication of polymeric membranes: A review, Chemosphere, 295 (2022) 133914.
  • [30] Ouyang Q., Cheng L., Wang H. and Li K., Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile, Polymer Degradation and Stability, 93 (8) (2008) 1415-1421.
  • [31] Voronko Y., Eder G. C., Knausz M., Oreski G., Koch T. and Berger K. A., Correlation of the loss in photovoltaic module performance with the ageing behaviour of the backsheets used, Progress in Photovoltaics: Research and Applications, 23 (11) (2015) 1501-1515.
  • [32] Keun S.W., Ho Y.J., Seung L.T. and Ho P.W., Electrospinning of ultrafine cellulose acetate fibers: Studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers, J Polym Sci Phys, 42 (2004) 5-11.
  • [33] Dudak F.C., Resveratrol yüklü selüloz asetat liflerinin karakterizasyonu, GIDA The Journal of Food, 44 (5) (2019) 810-818.
  • [34] Demirbağ Genç S., Alay Aksoy S. and Alkan C., A smart cotton fabric with adaptive moisture management through temperature sensitive poly(2-hydroxyethyl-6-(vinyl amino) hexanoate) finishing, Cellulose, 30 (2023) 2467-2481.

Investigation of Electrospun Polyacrylonitrile and Cellulose Acetate Smart Nanofibers Doped with Expanded Graphite for the Structure and Photothermal Effect

Year 2023, , 656 - 664, 28.12.2023
https://doi.org/10.17776/csj.1278533

Abstract

In this study, photothermal effect by doping expanded graphite (EG) to smart nanofibers produced by electrospinning method was investigated. Fourier transform infrared (FT-IR) spectroscopy was exploited for chemical characterization. Thermal analysis experiments were carried out by heating and cooling curves. Surface morphology of the produced materials was investigated through scanning electron microscope (SEM). Contact angle was determined through contact angle measurement device. The appearance of the peak of the characteristic cyano group in the structure of Polyacrylonitrile (PAN) at 2237.02 cm-1 in the nanofibers having different percentages synthesized with EG and PAN was accepted as the evidence of PAN nanofibers formation. The temperature platforms in the heating/cooling curves exhibited that the temperature of the PAN and cellulose acetate (CA) nanofibers mixed with different EG percentage have higher than pristine nanofibers. The surfaces of the EG@PAN and EG@CA nanofibers were homogeneously distributed fibrous, excessive EG heterogeneously dispersed or electrosprayed in shape. The maximum contacts angles were measured as 67.96° and 52.88° for nanofibers synthesized with EG@CA and EG@PAN, respectively. As the result, the temperature of the nanofibers mixed EG at different percentages increased resulting from having the higher thermal conductivity of EG. Main goal of the study is both investigating photothermal effect in PAN and CA electrospun nanofibers doped with EG of activating heat accumulation property of the produced smart nanofibers for heat energy production from the solar. Thus, it will be possible to develop a new promising method in the production of the smart textile products that have the storage capacity of the solar energy.

References

  • [1] Yaman Y., Enerji tasarrufu ve yenilenebilir enerji kaynakları. 1st Ed. İstanbul: Birsen Yayınevi, (2007) 17-20.
  • [2] Dinçer İ. and Rosen M.A., Thermal Energy Storage, Systems and Applications, 1st Ed. England: John Wiley & Sons, (2002) 23-26.
  • [3] Konuklu Y., Ersoy O., Paksoy H.Ö., Evcimen S., Çelik S. and Toraman Ö.Y., Termal enerji depolama materyali olarak diatomit/faz değiştiren madde kompozitlerinin üretilmesi, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6 (1) (2017) 238-243.
  • [4] Lucia U., Overview on fuel cells, Renewable and Sustainable Energy Reviews, 30 (2014) 164-169.
  • [5] Alkan, C., Thermal energy storage methods. In: Pielichowska K. and Pielichowski K. (Eds). Multifunctional Phase Change Materials. 1st ed. Amsterdam: Woodhead Publishing-Elsevier, (2023) 1-93.
  • [6] Gök Ö., Alkan C. and Konuklu Y., Developing a polyethylene glycol (PEG)/cellulose phase change composite for cooling application, 14th International Conference on Energy Storage-ENERSTOCK2018, Adana-Turkey, 2018, 999-1005.
  • [7] Stritih U., Zavrl E. and Paksoy H.O., Energy analysis and carbon saving potential of a complex heating system with solar assisted heat pump and phase change material (PCM) thermal storage in different climatic conditions, European Journal of Sustainable Development Research, 3 (1) (2019) Article No: em0067.
  • [8] Abhat A., Low temperature latent heat thermal energy storage: Heat storage materials, Solar Energy, 30 (4) (1983) 313-332.
  • [9] Zalba B., Marin J.M., Cabeza L.F. and Mehling H., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering, 23 (3) (2003) 251-283.
  • [10] Crespo A., Fernández C., Vérez D., Tarragona J., Borri E., Frazzica A., Cabeza L.F. and de Gracia A., Thermal performance assessment and control optimization of a solar-driven seasonal sorption storage system for residential application, Energy, 263 (2023) 125382.
  • [11] Navarro M., Diarce G., Lázaro A., Rojo A. and Delgado M., Comparative study on bubbling and shearing techniques for the crystallization of xylitol in TES systems, Results in Engineering, 17 (2023) 100909.
  • [12] Saraç E.G., Isıl düzenleme özelliği gösteren akıllı tekstil ürünlerinin geliştirilmesi ve performans özelliklerinin incelenmesi, PhD Thesis, Marmara University, Graduate School of Natural and Applied Sciences, 2020.
  • [13] Kuru A., Alay Aksoy S., Faz değiştiren maddeler ve tekstil uygulamaları, Journal of Textiles and Engineer, 19 (86) (2012) 41-48.
  • [14] Tözüm M.S., Alkan C. and Alay Aksoy S., Developing of thermal energy storing visual textile temperature indicators based on reversible color change, Journal of Industrial Textiles, 51 (2S) (2022) 1964S-1988S.
  • [15] Tözüm M.S., Alay Aksoy S. and Alkan C., Manufacturing surface active shell and bisphenol A free thermochromic acrylic microcapsules for textile applications, International Journal of Energy Research, 45 (2021) 7018-7037.
  • [16] Zhou Z., Wu X.F., Electrospinning superhydrophobic–superoleophilic fibrous PVDF membranes for high-efficiency water–oil separation, Materials and Letters, 160 (2015) 423-427.
  • [17] Gök Ö., Alkan C., Polivinil alkol (PVA) ile poli(etilen glikol) (PEG) 1000 karışımının elektro eğirilmiş lif oluşumunun incelenmesi ve ısıl enerji depolama uygulamalarında faz değişim maddesi (FDM) olarak kullanılması, 5th International Fiber and Polymer Research Symposium, İstanbul-Turkey, 2019, 44-45.
  • [18] Karatepe U.Y., Ozdemir T., Improving mechanical and antibacterial properties of PMMA via polyblend electrospinning with silk fibroin and polyethyleneimine towards dental applications, Bioactive Materials, 5 (2020) 510-515.
  • [19] Boz Noyan E.C., The development of heat storing nanocomposite nanofibers, Master Thesis, İstanbul Technical University (İTÜ), Graduate School of Science Engineering and Technology, 2015.
  • [20] Özmen G. and Alay Aksoy S., Eş eksenli elektro lif çekim yöntemi ile termal enerji depolama özellikli kompozit nanolif üretimi üzerine bir araştırma, Journal of Engineering Sciences and Design, 8 (4) (2020) 1248-1259.
  • [21] Liguori A., Pandini S., Rinoldi C., Zaccheroni N., Pierini F., Focarete M.L. and Gualandi C., Thermoactive smart electrospun nanofibers, Macromolecular Rapid Communications, (2022) 2100694.
  • [22] Liu H., Zhou F., Shi X., Sun K., Kou Y., Das P., Li Y., Zhang X., Mateti S., Chen Y., Wu Z.S., Shi Q., A thermoregulatory flexible phase change nonwoven for all season high efciency wearable thermal management, Nano-Micro Letters, 15 (29) (2023) 1-12.
  • [23] Li Z. and Yuan J., Phase change microcapsules with high encapsulation efficiency using Janus silica particles as stabilizers and their application in cement, Construction and Building Materials, 307 (2021) 124971.
  • [24] Taş C.E., Hybrid polymeric materials comprising clay nanotubes, photothermal agents and phase change materials for food, water and energy applications, PhD Thesis, Sabancı University, Graduate School of Engineering and Natural Sciences, 2021.
  • [25] Li M., Wu Z. and Tan J., Heat storage properties of the cement mortar incorporated with composite phase change material, Applied Energy, 103 (2013) 393-399.
  • [26] Okay Z., Poliakrilonitril liflerin kimyasal modifikasyonu ve modifiye edilmiş liflere gümüş parçacıkları çöktürülerek bazı özelliklerinin incelenmesi, Master Thesis, Ankara University, Graduate School of Natural and Applied Sciences, 2018.
  • [27] Puls J., Wilson S.A. and Hölter D., Degradation of cellulose acetate-based materials: A review, Journal of Polymers and the Environment, 19 (2011) 152-165.
  • [28] Wsoo M.A., Shahir S., Bohari S.P.M., Nayan N.H.M. and Abd Razak S.I., A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective, Carbohydrate Research, 491 (2020) 107978.
  • [29] Vatanpour V., Pasaoglu M.E., Barzegar H., Teber O.O., Kaya R., Bastug M., Khataee A. and Koyuncu I., Cellulose acetate in fabrication of polymeric membranes: A review, Chemosphere, 295 (2022) 133914.
  • [30] Ouyang Q., Cheng L., Wang H. and Li K., Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile, Polymer Degradation and Stability, 93 (8) (2008) 1415-1421.
  • [31] Voronko Y., Eder G. C., Knausz M., Oreski G., Koch T. and Berger K. A., Correlation of the loss in photovoltaic module performance with the ageing behaviour of the backsheets used, Progress in Photovoltaics: Research and Applications, 23 (11) (2015) 1501-1515.
  • [32] Keun S.W., Ho Y.J., Seung L.T. and Ho P.W., Electrospinning of ultrafine cellulose acetate fibers: Studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers, J Polym Sci Phys, 42 (2004) 5-11.
  • [33] Dudak F.C., Resveratrol yüklü selüloz asetat liflerinin karakterizasyonu, GIDA The Journal of Food, 44 (5) (2019) 810-818.
  • [34] Demirbağ Genç S., Alay Aksoy S. and Alkan C., A smart cotton fabric with adaptive moisture management through temperature sensitive poly(2-hydroxyethyl-6-(vinyl amino) hexanoate) finishing, Cellulose, 30 (2023) 2467-2481.
There are 34 citations in total.

Details

Primary Language English
Subjects Cell Metabolism
Journal Section Natural Sciences
Authors

Özgül Gök 0000-0001-5443-2843

Publication Date December 28, 2023
Submission Date April 6, 2023
Acceptance Date October 28, 2023
Published in Issue Year 2023

Cite

APA Gök, Ö. (2023). Investigation of Electrospun Polyacrylonitrile and Cellulose Acetate Smart Nanofibers Doped with Expanded Graphite for the Structure and Photothermal Effect. Cumhuriyet Science Journal, 44(4), 656-664. https://doi.org/10.17776/csj.1278533