Research Article
BibTex RIS Cite
Year 2023, , 197 - 202, 26.03.2023
https://doi.org/10.17776/csj.1192144

Abstract

References

  • [1] Greiner W., Müller B., Gauge Teory of Weak Interactions, 3rd ed. Berlin: Springer (2000).
  • [2] Langacher P., The Standard Model and Beyond. 2nd ed. New Jersey: CRC Press, (2017) 257-261.
  • [3] Weinberg S., The Quantum Theory of Fields, Volume 2. 1st ed. Cambridge University Press, (2005) 295-317.
  • [4] Mohapatra Rabindra N., Unification and Supersymmetry, 1st ed. New York: Springer, (1986) 224-243.
  • [5] Weinberg S., The Quantum Theory of Fields, Volume 3, Cambridge University Press ( 2005) 179-208
  • [6] Haber H. E., Kane G. L., The second for supersymmetry: Probing physics beyond the Standard model, Phys. Pept. 117 (1985) 75-263.
  • [7] Dubovik V. M., Cheshkov A. A., Multipole expansion is classical and quantum field theory and radiaton, Sov. J. Part. Nucl., 5 (1975) 318-337.
  • [8] Dubovik V. M.,Tosunyan L. A., Toroidal moments in the physics of electromagnetic and weak interactions, Sov. J. Part. Nucl., 14 (1983) 504.
  • [9] Dubovik V. M., Tugushev V. V., Toroid moments in electrodynamics and solid state physics, Phys. Rep., 187 (1990) 145-202.
  • [10] Dubovik V. M., Kuznetsov V. E.,The toroid dipole moment of the neutrina, Int. J. Mod. Phys. A, 13 (1998) 5257-5277.
  • [11] Bukina E. N., Dubovik, V. M., Kuznetsov V. E.,Transmission radiation on the neutrino toroiol dipole moment, Phys. Lett. B, 435 (1998) 134-138.
  • [12] Wood C. S. et al., Measurement of party nonconsevation anol an anapole moment in Cesium, Science, 275 (1997) 1759-1763.
  • [13] Giunti C., Studennikin A., Neutrino electromagnetic interactions: A window to new physics, Rev. Mod. Phys., 87 (2015) 531-592.
  • [14] Kayser B., Majorana neutrinos and their electromagnetic properties, Phys. Rev. D, 26 (1982) 1662-1670.
  • [15] NievesJ. F., Electromagnetic properties of Majerana neutrinos , Phys. Rev. D, 26 (1998) 3152-3158.
  • [16] Roberts B. M. et al, Parityi-violating interactions of cosmic fields with atoms, molecules and nuclei, Phys. Rev. D, 90 (2014) 096005.
  • [17] Sakakibara S., Aachen preprint (1979) PITHA 79/17.
  • [18] Dombey N., Kennedy, A. D., A calculation of electron anapole moment, Phys. Lett. B, 91 (1980) 428-430.
  • [19] Paschos M. E. A., Rodriguez J.M., All electromagnetic form factors, Eur. J. Phys., 26 (2005) 545-560.
  • [20]Abak M., Aydın C., Calculation of the Anapole moment of the neutrino, Europhys. Lett., 4 (1987) 881-886.
  • [21] Abak M., Aydın C., Extension of SU(2)xU(1) models and the form factors of the massive Dirac Neutrinos, Nuovo Cimento A, 101 (1989) 597-606.
  • [22] Aydın C., The anapole moment of Dirac neutrinos in left-right symmetric model and in minimal supersymmetric model, Modern Phys. Lett. A, 16 (2001) 1823-1828.
  • [23]Fukugita M., Yanagida T., Physics of Neutrinos and Applications to Astrophysics, Springer-Verlag (2003).
  • [24]Czyz H., Kolodziej K., Zralek M.,Static properties of charged leptons and searching for a super heavy neutrino, Physica Scripta, 37 (1988) 205-208.
  • [25]Czyz H., Kolodziej K., Zralek M., Christova P., Is the anapole moment a physical observable?, Can. J. Phys., 66 (1988) 132-134.
  • [26]Whitcomb K. M. and Latimer D. C., Scattering from a quantum anapole at low energies, Am. J. Phys., 85 (2017) 932-936.
  • [27] Sahoo B. K., Aoki T., Das B. P., Sakemi Y., Enhanced spin dependent parity non-conservation effect is the transition A possibility for unambigious detection of nuclear anapole moment, arXive: 1512.02055 (hep-ph).
  • [28]Ho C. M., Scherrer R. J., Anapole dark matter, Phys. Lett. B, 722 (2013) 341-346.
  • [29]Kopp,J., Michaels, L., Smirnov J.,Loopy constrains on leptonhilic dark matter anol internal bremsstrahlung, JCAP04, (2014) 022.
  • [30]Cabrel-Rosetti L. G., Mondragon M., Reyes-Perez E., Anapole moment of the lightest neutralino in the cMSSM, Nucl. Phys. B, 907 (2016) 1-17.
  • [31] Ibarra A., Yaguna, C. E., Zapata O. ,Direct detection of fermion dark matter in radiative seesaw model, Phys. Rev. D, 93 (2016) 035012
  • [32]Rosiek J., Complete et of Feynman rule for the minimal supersymmetric extenion of the standard model, Phys. Rev. D, 41 (1995) 3464-3501.
  • [33]Moroi T., Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 65656575; Erratum: Phys. Rev. D, 56 (1997) 4424.
  • [34]Sun K. S., Chen, J. B. Yang, X. Y. and Cui, S. K., LFV decays of Z boson in Minimal R-symmetric Supersymmetric Standard Model, Chin. Phys. C, 43 (2019) 043101.
  • [35]Aydın C., Anapole Moment of Leptons in the Minimal Supersymmetric Standard Model, arXiv:1910.09545v3 (hep-ph).
  • [36]Musolf M. J., Holstein B. R.,Observability of the anapole moment and charge radius , Phys. Rev. D, 43 (1991) 2956-2970.
  • [37] Cadeddu M., Dordei F., Giunti C., Li Y.F., Picciau E., Yang Y.Y., Physics results from the first COHERENT observation of coherent elastic neutrino-nucleus scattering in argon and their combination with cesium-iodide data, Phys. Rev. D, 102 (2020) 015030.
  • [38]Khan A.N., Constraints on general light mediators from PandaX-II electron recoil data, Phys. Lett. B, 819 (2021) 136415.
  • [39]Guinti C., Gruszko J., Jones B., Kaufman L., Parno D., Pocar A., Report of Topical Group on Neutrino Properties for Snowmass 2021, arXiv :2209.03340(hep-ph).
  • [40]Workman R.L. et al., Review of Particle Physics ( Particle Data Group), Prog.Theor. Exp. Phys., 2022, 083C01 (2022).

Contribution of Neutralino and Chargino to Diagonal Form Factor of Majorana Neutrino in the Minimal Supersymmetric Standard Model

Year 2023, , 197 - 202, 26.03.2023
https://doi.org/10.17776/csj.1192144

Abstract

In this study, we have calculated the diagonal form factor and charge radius of Majorana neutrinos in the Minimal Supersymmetry Standard Model (MSSM) using Feynman-'t Hooft gauge and dimensional regularization. From the obtained result of calculations, we have seen that the main contribution come from chargino particles in MSSM and its contribution is very small than SM contribution. It is found that 〈r_ν^2 〉=1,66 .〖10〗^(-32) cm^2 for the charge radius of electron neutrinos which is in good agreement with results obtained from the scattering experiments.

References

  • [1] Greiner W., Müller B., Gauge Teory of Weak Interactions, 3rd ed. Berlin: Springer (2000).
  • [2] Langacher P., The Standard Model and Beyond. 2nd ed. New Jersey: CRC Press, (2017) 257-261.
  • [3] Weinberg S., The Quantum Theory of Fields, Volume 2. 1st ed. Cambridge University Press, (2005) 295-317.
  • [4] Mohapatra Rabindra N., Unification and Supersymmetry, 1st ed. New York: Springer, (1986) 224-243.
  • [5] Weinberg S., The Quantum Theory of Fields, Volume 3, Cambridge University Press ( 2005) 179-208
  • [6] Haber H. E., Kane G. L., The second for supersymmetry: Probing physics beyond the Standard model, Phys. Pept. 117 (1985) 75-263.
  • [7] Dubovik V. M., Cheshkov A. A., Multipole expansion is classical and quantum field theory and radiaton, Sov. J. Part. Nucl., 5 (1975) 318-337.
  • [8] Dubovik V. M.,Tosunyan L. A., Toroidal moments in the physics of electromagnetic and weak interactions, Sov. J. Part. Nucl., 14 (1983) 504.
  • [9] Dubovik V. M., Tugushev V. V., Toroid moments in electrodynamics and solid state physics, Phys. Rep., 187 (1990) 145-202.
  • [10] Dubovik V. M., Kuznetsov V. E.,The toroid dipole moment of the neutrina, Int. J. Mod. Phys. A, 13 (1998) 5257-5277.
  • [11] Bukina E. N., Dubovik, V. M., Kuznetsov V. E.,Transmission radiation on the neutrino toroiol dipole moment, Phys. Lett. B, 435 (1998) 134-138.
  • [12] Wood C. S. et al., Measurement of party nonconsevation anol an anapole moment in Cesium, Science, 275 (1997) 1759-1763.
  • [13] Giunti C., Studennikin A., Neutrino electromagnetic interactions: A window to new physics, Rev. Mod. Phys., 87 (2015) 531-592.
  • [14] Kayser B., Majorana neutrinos and their electromagnetic properties, Phys. Rev. D, 26 (1982) 1662-1670.
  • [15] NievesJ. F., Electromagnetic properties of Majerana neutrinos , Phys. Rev. D, 26 (1998) 3152-3158.
  • [16] Roberts B. M. et al, Parityi-violating interactions of cosmic fields with atoms, molecules and nuclei, Phys. Rev. D, 90 (2014) 096005.
  • [17] Sakakibara S., Aachen preprint (1979) PITHA 79/17.
  • [18] Dombey N., Kennedy, A. D., A calculation of electron anapole moment, Phys. Lett. B, 91 (1980) 428-430.
  • [19] Paschos M. E. A., Rodriguez J.M., All electromagnetic form factors, Eur. J. Phys., 26 (2005) 545-560.
  • [20]Abak M., Aydın C., Calculation of the Anapole moment of the neutrino, Europhys. Lett., 4 (1987) 881-886.
  • [21] Abak M., Aydın C., Extension of SU(2)xU(1) models and the form factors of the massive Dirac Neutrinos, Nuovo Cimento A, 101 (1989) 597-606.
  • [22] Aydın C., The anapole moment of Dirac neutrinos in left-right symmetric model and in minimal supersymmetric model, Modern Phys. Lett. A, 16 (2001) 1823-1828.
  • [23]Fukugita M., Yanagida T., Physics of Neutrinos and Applications to Astrophysics, Springer-Verlag (2003).
  • [24]Czyz H., Kolodziej K., Zralek M.,Static properties of charged leptons and searching for a super heavy neutrino, Physica Scripta, 37 (1988) 205-208.
  • [25]Czyz H., Kolodziej K., Zralek M., Christova P., Is the anapole moment a physical observable?, Can. J. Phys., 66 (1988) 132-134.
  • [26]Whitcomb K. M. and Latimer D. C., Scattering from a quantum anapole at low energies, Am. J. Phys., 85 (2017) 932-936.
  • [27] Sahoo B. K., Aoki T., Das B. P., Sakemi Y., Enhanced spin dependent parity non-conservation effect is the transition A possibility for unambigious detection of nuclear anapole moment, arXive: 1512.02055 (hep-ph).
  • [28]Ho C. M., Scherrer R. J., Anapole dark matter, Phys. Lett. B, 722 (2013) 341-346.
  • [29]Kopp,J., Michaels, L., Smirnov J.,Loopy constrains on leptonhilic dark matter anol internal bremsstrahlung, JCAP04, (2014) 022.
  • [30]Cabrel-Rosetti L. G., Mondragon M., Reyes-Perez E., Anapole moment of the lightest neutralino in the cMSSM, Nucl. Phys. B, 907 (2016) 1-17.
  • [31] Ibarra A., Yaguna, C. E., Zapata O. ,Direct detection of fermion dark matter in radiative seesaw model, Phys. Rev. D, 93 (2016) 035012
  • [32]Rosiek J., Complete et of Feynman rule for the minimal supersymmetric extenion of the standard model, Phys. Rev. D, 41 (1995) 3464-3501.
  • [33]Moroi T., Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 65656575; Erratum: Phys. Rev. D, 56 (1997) 4424.
  • [34]Sun K. S., Chen, J. B. Yang, X. Y. and Cui, S. K., LFV decays of Z boson in Minimal R-symmetric Supersymmetric Standard Model, Chin. Phys. C, 43 (2019) 043101.
  • [35]Aydın C., Anapole Moment of Leptons in the Minimal Supersymmetric Standard Model, arXiv:1910.09545v3 (hep-ph).
  • [36]Musolf M. J., Holstein B. R.,Observability of the anapole moment and charge radius , Phys. Rev. D, 43 (1991) 2956-2970.
  • [37] Cadeddu M., Dordei F., Giunti C., Li Y.F., Picciau E., Yang Y.Y., Physics results from the first COHERENT observation of coherent elastic neutrino-nucleus scattering in argon and their combination with cesium-iodide data, Phys. Rev. D, 102 (2020) 015030.
  • [38]Khan A.N., Constraints on general light mediators from PandaX-II electron recoil data, Phys. Lett. B, 819 (2021) 136415.
  • [39]Guinti C., Gruszko J., Jones B., Kaufman L., Parno D., Pocar A., Report of Topical Group on Neutrino Properties for Snowmass 2021, arXiv :2209.03340(hep-ph).
  • [40]Workman R.L. et al., Review of Particle Physics ( Particle Data Group), Prog.Theor. Exp. Phys., 2022, 083C01 (2022).
There are 40 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Coşkun Aydın 0000-0002-6351-0740

Publication Date March 26, 2023
Submission Date October 20, 2022
Acceptance Date December 14, 2022
Published in Issue Year 2023

Cite

APA Aydın, C. (2023). Contribution of Neutralino and Chargino to Diagonal Form Factor of Majorana Neutrino in the Minimal Supersymmetric Standard Model. Cumhuriyet Science Journal, 44(1), 197-202. https://doi.org/10.17776/csj.1192144