Year 2025,
Volume: 46 Issue: 2, 384 - 389, 30.06.2025
Merve Nur Koçak
,
İlkay Demir
Project Number
MRK-2024-004 and 22AG074.
References
- [1] Demir I., Elagoz S., Interruption time effects on InGaAs/InAlAs superlattices of quantum cascade laser structures grown by MOCVD, Superlattices Microstruct., 100 (2016) 723-729.
- [2] Perkitel I., Demir I., Effect of Si-doped and undoped inter-layer transition time on the strain-compensated InGaAs/InAlAs QCL active region grown with MOVPE, J. Mol. Struct., 1272 (2023) 134203.
- [3] Lee W.J., Sohn W.B., Shin J.C., Han I.K., Kim T.G., Kang J., Growth of InGaAs/InAlAs superlattices for strain balanced quantum cascade lasers by molecular beam epitaxy, J. Cryst. Growth, 614 (2023) 127233.
- [4] Faist J., Capasso F., Sivco D.L., Sirtori C., Hutchinson A.L., Cho A.Y., Quantum cascade laser, Science, 264 (5158) (1994) 553-556.
- [5] Tian W., Zhang D.L., Zheng X.T., Yang R.K., Liu Y., Lu L.D., Zhu L.Q., MBE growth and optimization of the InGaAs/InAlAs materials system for quantum cascade laser, Front. Mater., 9 (2022) 1050205.
- [6] Wysocki G., Curl R.F., Tittel F.K., Maulini R., Bulliard J.M., Faist J., Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications, Appl. Phys. B, 81 (2005) 769-777.
- [7] Yoshinaga H., Mori H., Hashimoto J.I., Tsuji Y., Murata M., Katsuyama T., Low Power Consumption (<1 W) Mid-Infrared Quantum Cascade Laser for Gas Sensing, SEI Tech. Rev., 79 (2014) 112-115.
- [8] Li J., Parchatka U., Fischer H., Development of field-deployable QCL sensor for simultaneous detection of ambient N2O and CO, Sens. Actuators B Chem., 182 (2013) 659-667.
- [9] Zhang M., Yeow J.T., Nanotechnology-Based Terahertz Biological Sensing: A review of its current state and things to come, IEEE Nanotechnol. Mag., 10 (3) (2016) 30-38.
- [10] Kosterev A., Wysocki G., Bakhirkin Y., So S., Lewicki R., Fraser M., Curl R.F., Mid-infrared quantum cascade lasers, Proc. SPIE, 10974 (2018) 59-70.
- [11] Lee W.J., Seo J., Shin J.C., Han I.K., Kim T.G., Kang J., Interfacial characteristics dependence on interruption times in InGaAs/InAlAs superlattice grown by molecular beam epitaxy, J. Alloys Compd., 1006 (2024) 176297.
- [12] Koçak M.N., Pürlü K.M., Perkitel I., Altuntaş İ., Demir İ., In-situ and ex-situ face-to-face annealing of epitaxial AlN, Vacuum, 203 (2022) 111284.
- [13] Bugajski M., Pierścińska D., Gutowski P., Pierściński K., Sobczak G., Janus K., Kuźmicz A., Mid-infrared quantum cascade lasers, Laser Technol, Progress Appl. Lasers, Proc. SPIE, 10974 (2018) 59-70.
- [14] Wang C.A., Goyal A.K., Menzel S., Calawa D.R., Spencer M., Connors M.K., Capasso F., High power (>5 W) λ∼9.6 μm tapered quantum cascade lasers grown by OMVPE, J. Cryst. Growth, 370 (2013) 212-216.
- [15] Demir I., Altuntas I., Elagoz S., Arsine flow rate effect on the low growth rate epitaxial InGaAs layers, Semiconductors, 55 (10) (2021) 816-822.
- [16] Welch D.F., Wicks G.W., Eastman L.F., Parayanthal P., Pollak F.H., Improvement of optical characteristics of Al0.48In0.52As grown by molecular beam epitaxy, Appl. Phys. Lett., 46 (2) (1985) 169-171.
- [17] Kurihara K., Takashima M., Sakata K., Ueda R., Takahara M., Ikeda H., Shimoyama K., Phase separation in InAlAs grown by MOVPE with a low growth temperature, J. Cryst. Growth, 271 (3-4) (2004) 341-347.
- [18] Bass S.J., Barnett S.J., Brown G.T., Chew N.G., Cullis A.G., Pitt A.D., Skolnick M.S., Effect of growth temperature on the optical, electrical and crystallographic properties of epitaxial indium gallium arsenide grown by MOCVD in an atmospheric pressure reactor, J. Cryst. Growth, 79 (1-3) (1986) 378-385.
- [19] Konya T., X-ray thin-film measurement techniques. X-ray reflectivity measurement, The Rigaku Journal, 25 (2) (2009) 1-8.
- [20]Zhang S., Zhu L., Lu L., Cui J., Jia H., Du S., Li M., Effect of the V/III Ratio on the Quality of Strain-Balanced GaInAs/AlInAs Superlattices in Quantum Cascade Lasers, Opt. Mater., (2025) 116882.
- [21] Franckié M., Winge D.O., Wolf J., Liverini V., Dupont E., Trinité V., Wacker A., Impact of interface roughness distributions on the operation of quantum cascade lasers, Opt. Express, 23 (4) (2015) 5201-5212.
Superlattice Structure of Quantum Cascade Lasers: Structural and Morphological Effects of AsH₃ Flow
Year 2025,
Volume: 46 Issue: 2, 384 - 389, 30.06.2025
Merve Nur Koçak
,
İlkay Demir
Abstract
The quantum cascade lasers (QCLs) have been widely used in mid-infrared applications due to their high power, efficiency, and design flexibility. The InP-based quantum cascade lasers, particularly those utilizing In 0.53 Ga 0.47 As/In0.52Al0.48As superlattices, have been preferred for their lattice compatibility and well-established fabrication processes. However, the superlattice growth has required optimization, as relaxation mechanisms have affected structural quality beyond the critical thickness. In this study, InP-based quantum cascade lasers structures have been grown and characterized using Metal-Organic Vapor Phase Epitaxy (MOVPE). The impact of AsH3 (arsin) flow rate on superlattice quality has been investigated by growing samples with flow rates of 47 sccm, 60 sccm, and 75 sccm. Structural analysis has been conducted using high-resolution X-ray diffraction (HRXRD), while atomic force microscopy (AFM) has been used to examine surface morphology. The results obtained revealed the critical role of superlattice growth parameters on the performance of quantum cascade laser devices and provided important findings for determining the optimal AsH₃ flow rate. This study contributes to the improvement of growth processes of InP-based quantum cascade laser structures, leading to improved semiconductor laser performance.
Supporting Institution
The Scientific Research Project Fund of Sivas Cumhuriyet University, Turkey under the Project number MRK-2024-004 and TUBITAK under the Project number 22AG074.
Project Number
MRK-2024-004 and 22AG074.
References
- [1] Demir I., Elagoz S., Interruption time effects on InGaAs/InAlAs superlattices of quantum cascade laser structures grown by MOCVD, Superlattices Microstruct., 100 (2016) 723-729.
- [2] Perkitel I., Demir I., Effect of Si-doped and undoped inter-layer transition time on the strain-compensated InGaAs/InAlAs QCL active region grown with MOVPE, J. Mol. Struct., 1272 (2023) 134203.
- [3] Lee W.J., Sohn W.B., Shin J.C., Han I.K., Kim T.G., Kang J., Growth of InGaAs/InAlAs superlattices for strain balanced quantum cascade lasers by molecular beam epitaxy, J. Cryst. Growth, 614 (2023) 127233.
- [4] Faist J., Capasso F., Sivco D.L., Sirtori C., Hutchinson A.L., Cho A.Y., Quantum cascade laser, Science, 264 (5158) (1994) 553-556.
- [5] Tian W., Zhang D.L., Zheng X.T., Yang R.K., Liu Y., Lu L.D., Zhu L.Q., MBE growth and optimization of the InGaAs/InAlAs materials system for quantum cascade laser, Front. Mater., 9 (2022) 1050205.
- [6] Wysocki G., Curl R.F., Tittel F.K., Maulini R., Bulliard J.M., Faist J., Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications, Appl. Phys. B, 81 (2005) 769-777.
- [7] Yoshinaga H., Mori H., Hashimoto J.I., Tsuji Y., Murata M., Katsuyama T., Low Power Consumption (<1 W) Mid-Infrared Quantum Cascade Laser for Gas Sensing, SEI Tech. Rev., 79 (2014) 112-115.
- [8] Li J., Parchatka U., Fischer H., Development of field-deployable QCL sensor for simultaneous detection of ambient N2O and CO, Sens. Actuators B Chem., 182 (2013) 659-667.
- [9] Zhang M., Yeow J.T., Nanotechnology-Based Terahertz Biological Sensing: A review of its current state and things to come, IEEE Nanotechnol. Mag., 10 (3) (2016) 30-38.
- [10] Kosterev A., Wysocki G., Bakhirkin Y., So S., Lewicki R., Fraser M., Curl R.F., Mid-infrared quantum cascade lasers, Proc. SPIE, 10974 (2018) 59-70.
- [11] Lee W.J., Seo J., Shin J.C., Han I.K., Kim T.G., Kang J., Interfacial characteristics dependence on interruption times in InGaAs/InAlAs superlattice grown by molecular beam epitaxy, J. Alloys Compd., 1006 (2024) 176297.
- [12] Koçak M.N., Pürlü K.M., Perkitel I., Altuntaş İ., Demir İ., In-situ and ex-situ face-to-face annealing of epitaxial AlN, Vacuum, 203 (2022) 111284.
- [13] Bugajski M., Pierścińska D., Gutowski P., Pierściński K., Sobczak G., Janus K., Kuźmicz A., Mid-infrared quantum cascade lasers, Laser Technol, Progress Appl. Lasers, Proc. SPIE, 10974 (2018) 59-70.
- [14] Wang C.A., Goyal A.K., Menzel S., Calawa D.R., Spencer M., Connors M.K., Capasso F., High power (>5 W) λ∼9.6 μm tapered quantum cascade lasers grown by OMVPE, J. Cryst. Growth, 370 (2013) 212-216.
- [15] Demir I., Altuntas I., Elagoz S., Arsine flow rate effect on the low growth rate epitaxial InGaAs layers, Semiconductors, 55 (10) (2021) 816-822.
- [16] Welch D.F., Wicks G.W., Eastman L.F., Parayanthal P., Pollak F.H., Improvement of optical characteristics of Al0.48In0.52As grown by molecular beam epitaxy, Appl. Phys. Lett., 46 (2) (1985) 169-171.
- [17] Kurihara K., Takashima M., Sakata K., Ueda R., Takahara M., Ikeda H., Shimoyama K., Phase separation in InAlAs grown by MOVPE with a low growth temperature, J. Cryst. Growth, 271 (3-4) (2004) 341-347.
- [18] Bass S.J., Barnett S.J., Brown G.T., Chew N.G., Cullis A.G., Pitt A.D., Skolnick M.S., Effect of growth temperature on the optical, electrical and crystallographic properties of epitaxial indium gallium arsenide grown by MOCVD in an atmospheric pressure reactor, J. Cryst. Growth, 79 (1-3) (1986) 378-385.
- [19] Konya T., X-ray thin-film measurement techniques. X-ray reflectivity measurement, The Rigaku Journal, 25 (2) (2009) 1-8.
- [20]Zhang S., Zhu L., Lu L., Cui J., Jia H., Du S., Li M., Effect of the V/III Ratio on the Quality of Strain-Balanced GaInAs/AlInAs Superlattices in Quantum Cascade Lasers, Opt. Mater., (2025) 116882.
- [21] Franckié M., Winge D.O., Wolf J., Liverini V., Dupont E., Trinité V., Wacker A., Impact of interface roughness distributions on the operation of quantum cascade lasers, Opt. Express, 23 (4) (2015) 5201-5212.