Research Article
BibTex RIS Cite

Eco-Friendly and Durable Sponge with In Situ Formed Silver Nanoparticles for Antimicrobial Filtration

Year 2025, Volume: 46 Issue: 2, 310 - 318, 30.06.2025
https://doi.org/10.17776/csj.1654366

Abstract

Microbial contamination poses a significant challenge to the management of water resources and biomedical applications. In this study, the development of a biogenic antimicrobial filtration system has been successfully achieved. This system utilizes a plant extract-mediated synthesis approach for in situ formation of silver nanoparticles (AgNPs) within a porous sponge matrix. The fabrication process involved the immersion of a commercial sponge in an aqueous solution of AgNO3 and plant extract, followed by a thermal treatment. The structural and chemical properties of the Ag@Sponge were then confirmed via a range of analytical methods, including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). These results indicated the successful incorporation of AgNPs within the sponge, with a predominant spherical morphology and an average size of 54 ± 14 nm. Antimicrobial activity tests demonstrated that Ag@Sponge exhibited significant bacterial and fungal inactivation, achieving >99.99999% microbial reduction against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans) (R > 7). Furthermore, the results of filtration experiments demonstrated that microbial removal efficiency increased progressively over six cycles, reaching final reductions of 6.2–6.4 log CFU/mL for E. coli, S. aureus, and C. albicans. Mechanical durability tests confirmed that Ag@Sponge retained >6 log CFU/mL reduction after 5000 cm abrasion (down to 6.6 ± 0.5) and 400 bending cycles (down to 6.1 ± 1.2), indicating strong mechanical resilience and in situ nanoparticle stability. These findings highlight the potential of Ag@Sponge as a sustainable and efficient antimicrobial filtration material for practical applications in water purification and medical decontamination.

References

  • [1] Abosse J.S., Megersa B., Zewge F., Eregno F.E., Healthcare waste management and antimicrobial resistance: a critical review, Journal of Water and Health, 22 (2024) 2076–2093.
  • [2] Chand S., Shastry S., Hiremath S., Joel J., Bhat C., Uday V., Water, sanitation, hygiene and biomedical waste disposal in the healthcare system: A review, Biomedicine, 40 (2020) 14.
  • [3] Singh H., YT K., Mishra A.K., Singh M., Mohanto S., Ghumra S., Seelan A., Mishra A., Kumar A., Pallavi J., Ahmed M.G., Sangeetha J., Thangadurai D., Harnessing the foundation of biomedical waste management for fostering public health: strategies and policies for a clean and safer environment, Discov Appl Sci, 6 (2024) 89.
  • [4] Pal M., Ayele Y., Hadush A., Panigrahi S., Jadhav V., Public Health Hazards Due to Unsafe Drinking Water, Air Water Borne Dis., 7 (2018) 1000138.
  • [5] Matta G., Kumar P., Uniyal D.P., Joshi D.U., Communicating Water, Sanitation, and Hygiene under Sustainable Development Goals 3, 4, and 6 as the Panacea for Epidemics and Pandemics Referencing the Succession of COVID-19 Surges, ACS EST Water, 2 (2022) 667–689.
  • [6] Tyagi I., Kumar V., Tyagi K., Water pollution—sources and health implications of the environmental contaminants on the aquatic ecosystem and humans: approach toward sustainable development goals, In: Dehghani M.H., Karri R.R., Tyagi I., Scholz M. (Eds.), Water, The Environment, and the Sustainable Development Goals, 1st ed. Elsevier, (2024) 35–66.
  • [7] Rajapakse J., Otoo M., Danso G., Progress in delivering SDG6: Safe water and sanitation, Cambridge Prisms: Water, 1 (2023) e6.
  • [8] Bharti B., Li H., Ren Z., Zhu R., Zhu Z., Recent advances in sterilization and disinfection technology: A review, Chemosphere, 308 (2022) 136404.
  • [9] Da Costa J.B., Rodgher S., Daniel L.A., Espíndola E.L.G., Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation, Ecotoxicology, 23 (2014) 1803–1813.
  • [10] Kong J., Lu Y., Ren Y., Chen Z., Chen M., The virus removal in UV irradiation, ozonation and chlorination, Water Cycle, 2 (2021) 23–31.
  • [11] Mandal T.K., Nanomaterial-Enhanced Hybrid Disinfection: A Solution to Combat Multidrug-Resistant Bacteria and Antibiotic Resistance Genes in Wastewater, Nanomaterials, 14 (2024) 1847.
  • [12] Cai Y., Sun T., Li G., An T., Traditional and Emerging Water Disinfection Technologies Challenging the Control of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes, ACS EST Eng., 1 (2021) 1046–1064.
  • [13] Sanganyado E., Gwenzi W., Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks, Science of The Total Environment, 669 (2019) 785–797.
  • [14] Castro-Muñoz R., The Role of New Inorganic Materials in Composite Membranes for Water Disinfection, Membranes, 10 (2020) 101.
  • [15] Slavin Y.N., Asnis J., Häfeli U.O., Bach H., Metal nanoparticles: understanding the mechanisms behind antibacterial activity, J Nanobiotechnol, 15 (2017) 65.
  • [16] Demirel Sahin G., Sahin F., Barlas F.B., Onses M.S., Acar S., Antimicrobial, anti-biofouling, antioxidant, and biocompatible fabrics with high durability via green growth of trimetallic nanoparticles, Materials Today Communications, 41 (2024) 110807.
  • [17] Sahin F., Camdal A., Demirel Sahin G., Ceylan A., Ruzi M., Onses M.S., Disintegration and Machine-Learning-Assisted Identification of Bacteria on Antimicrobial and Plasmonic Ag–CuxO Nanostructures, ACS Appl. Mater. Interfaces, 15 (2023).
  • [18] Carrillo J.-M.Y., Dobrynin A.V., Contact Mechanics of Nanoparticles, Langmuir, 28 (2012) 10881–10890.
  • [19] Wang H., Zhang W., Zeng S., Shen C., Jin C., Huang Y., Interactions between nanoparticles and fractal surfaces, Water Research, 151 (2019) 296–309.
  • [20] Besha A.T., Liu Y., Bekele D.N., Dong Z., Naidu R., Gebremariam G.N., Sustainability and environmental ethics for the application of engineered nanoparticles, Environmental Science & Policy, 103 (2020) 85–98.
  • [21] Saravanan A., Kumar P.S., Karishma S., Vo D.-V.N., Jeevanantham S., Yaashikaa P.R., George C.S., A review on biosynthesis of metal nanoparticles and its environmental applications, Chemosphere, 264 (2021) 128580.
  • [22] Kirubakaran D., Wahid J.B.A., Karmegam N., Jeevika R., Sellapillai L., Rajkumar M., SenthilKumar K.J., A Comprehensive Review on the Green Synthesis of Nanoparticles: Advancements in Biomedical and Environmental Applications, Biomedical Materials & Devices, (2025) 1-26.
  • [23] Wei F., Zhao X., Li C., Han X., A novel strategy for water disinfection with a AgNPs/gelatin sponge filter, Environ Sci Pollut Res, 25 (2018) 19480–19487.
  • [24] Queirós C.S.G.P., Cardoso S., Lourenço A., Ferreira J., Miranda I., Lourenço M.J.V., Pereira H., Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition, Biomass Conv. Bioref., 10 (2020) 175–188.
  • [25] Sahin F., Celik N., Ceylan A., Ruzi M., Onses M.S., One-step Green Fabrication of Antimicrobial Surfaces via In Situ Growth of Copper Oxide Nanoparticles, ACS Omega, 7 (2022) 26504–26513.
  • [26] Khan M.S.J., Kamal T., Ali F., Asiri A.M., Khan S.B., Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants, International Journal of Biological Macromolecules, 132 (2019) 772–783.
  • [27] Sahin F., Celik N., Camdal A., Sakir M., Ceylan A., Ruzi M., Onses M.S., Machine Learning-Assisted Pesticide Detection on a Flexible Surface-Enhanced Raman Scattering Substrate Prepared by Silver Nanoparticles, ACS Appl. Nano Mater., 5 (2022) 13112–13122.
  • [28] Elemike E.E., Onwudiwe D.C., Fayemi O.E., Botha T.L., Green synthesis and electrochemistry of Ag, Au, and Ag–Au bimetallic nanoparticles using golden rod (Solidago canadensis) leaf extract, Appl. Phys., A 125 (2019) 42.
  • [29] Meldrum F.C., O’Shaughnessy C., Crystallization in Confinement, Advanced Materials, 32 (2020) 2001068.
  • [30] Makvandi P., Wang C., Zare E.N., Borzacchiello A., Niu L., Tay F.R., Metal-Based Nanomaterials in Biomedical Applications: Antimicrobial Activity and Cytotoxicity Aspects, Advanced Functional Materials, 30 (2020) 1910021.
  • [31] Cheng D., Zhang Y., Liu Y., Bai X., Ran J., Bi S., Deng Z., Tang X., Wu J., Cai G., Wang X., Mussel-inspired synthesis of filter cotton-based AgNPs for oil/water separation, antibacterial and catalytic application, Materials Today Communications, 25 (2020) 101467.
  • [32] ISO 20743:2021, ISO (n.d.). https://www.iso.org/standard/79819.html (accessed March 8, 2025).
  • [33] Vaiwala R., Sharma P., Ganapathy Ayappa K., Differentiating interactions of antimicrobials with Gram-negative and Gram-positive bacterial cell walls using molecular dynamics simulations, Biointerphases, 17 (2022) 061008.
  • [34] Wang M., Li Z., Zhang Y., Li Y., Li N., Huang D., Xu B., Interaction with teichoic acids contributes to highly effective antibacterial activity of graphene oxide on Gram-positive bacteria, Journal of Hazardous Materials, 412 (2021) 125333.
  • [35] Modi S.K., Gaur S., Sengupta M., Singh M.S., Mechanistic insights into nanoparticle surface-bacterial membrane interactions in overcoming antibiotic resistance, Front. Microbiol., 14 (2023) 1135579.
  • [36] Mikhailova E.O., Green Silver Nanoparticles: An Antibacterial Mechanism, Antibiotics, 14 (2025) 5.
  • [37] Duman H., Eker F., Akdaşçi E., Witkowska A.M., Bechelany M., Karav S., Silver Nanoparticles: A Comprehensive Review of Synthesis Methods and Chemical and Physical Properties, Nanomaterials, 14 (2024) 1527.
  • [38] Yu Y., Zhou Z., Huang G., Cheng H., Han L., Zhao S., Chen Y., Meng F., Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: Recent advancements and critical challenges, Water Research, 222 (2022) 118901.
  • [39] Sukhorukova I.V., Sheveyko A.N., Shvindina N.V., Denisenko E.A., Ignatov S.G., Shtansky D.V., Approaches for Controlled Ag+ Ion Release: Influence of Surface Topography, Roughness, and Bactericide Content, ACS Appl. Mater. Interfaces, 9 (2017) 4259–4271.
  • [40] Saud A., Gupta S., Allal A., Preud’homme H., Shomar B., Zaidi S.J., Progress in the Sustainable Development of Biobased (Nano)materials for Application in Water Treatment Technologies, ACS Omega, 9 (2024) 29088–29113.
Year 2025, Volume: 46 Issue: 2, 310 - 318, 30.06.2025
https://doi.org/10.17776/csj.1654366

Abstract

References

  • [1] Abosse J.S., Megersa B., Zewge F., Eregno F.E., Healthcare waste management and antimicrobial resistance: a critical review, Journal of Water and Health, 22 (2024) 2076–2093.
  • [2] Chand S., Shastry S., Hiremath S., Joel J., Bhat C., Uday V., Water, sanitation, hygiene and biomedical waste disposal in the healthcare system: A review, Biomedicine, 40 (2020) 14.
  • [3] Singh H., YT K., Mishra A.K., Singh M., Mohanto S., Ghumra S., Seelan A., Mishra A., Kumar A., Pallavi J., Ahmed M.G., Sangeetha J., Thangadurai D., Harnessing the foundation of biomedical waste management for fostering public health: strategies and policies for a clean and safer environment, Discov Appl Sci, 6 (2024) 89.
  • [4] Pal M., Ayele Y., Hadush A., Panigrahi S., Jadhav V., Public Health Hazards Due to Unsafe Drinking Water, Air Water Borne Dis., 7 (2018) 1000138.
  • [5] Matta G., Kumar P., Uniyal D.P., Joshi D.U., Communicating Water, Sanitation, and Hygiene under Sustainable Development Goals 3, 4, and 6 as the Panacea for Epidemics and Pandemics Referencing the Succession of COVID-19 Surges, ACS EST Water, 2 (2022) 667–689.
  • [6] Tyagi I., Kumar V., Tyagi K., Water pollution—sources and health implications of the environmental contaminants on the aquatic ecosystem and humans: approach toward sustainable development goals, In: Dehghani M.H., Karri R.R., Tyagi I., Scholz M. (Eds.), Water, The Environment, and the Sustainable Development Goals, 1st ed. Elsevier, (2024) 35–66.
  • [7] Rajapakse J., Otoo M., Danso G., Progress in delivering SDG6: Safe water and sanitation, Cambridge Prisms: Water, 1 (2023) e6.
  • [8] Bharti B., Li H., Ren Z., Zhu R., Zhu Z., Recent advances in sterilization and disinfection technology: A review, Chemosphere, 308 (2022) 136404.
  • [9] Da Costa J.B., Rodgher S., Daniel L.A., Espíndola E.L.G., Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation, Ecotoxicology, 23 (2014) 1803–1813.
  • [10] Kong J., Lu Y., Ren Y., Chen Z., Chen M., The virus removal in UV irradiation, ozonation and chlorination, Water Cycle, 2 (2021) 23–31.
  • [11] Mandal T.K., Nanomaterial-Enhanced Hybrid Disinfection: A Solution to Combat Multidrug-Resistant Bacteria and Antibiotic Resistance Genes in Wastewater, Nanomaterials, 14 (2024) 1847.
  • [12] Cai Y., Sun T., Li G., An T., Traditional and Emerging Water Disinfection Technologies Challenging the Control of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes, ACS EST Eng., 1 (2021) 1046–1064.
  • [13] Sanganyado E., Gwenzi W., Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks, Science of The Total Environment, 669 (2019) 785–797.
  • [14] Castro-Muñoz R., The Role of New Inorganic Materials in Composite Membranes for Water Disinfection, Membranes, 10 (2020) 101.
  • [15] Slavin Y.N., Asnis J., Häfeli U.O., Bach H., Metal nanoparticles: understanding the mechanisms behind antibacterial activity, J Nanobiotechnol, 15 (2017) 65.
  • [16] Demirel Sahin G., Sahin F., Barlas F.B., Onses M.S., Acar S., Antimicrobial, anti-biofouling, antioxidant, and biocompatible fabrics with high durability via green growth of trimetallic nanoparticles, Materials Today Communications, 41 (2024) 110807.
  • [17] Sahin F., Camdal A., Demirel Sahin G., Ceylan A., Ruzi M., Onses M.S., Disintegration and Machine-Learning-Assisted Identification of Bacteria on Antimicrobial and Plasmonic Ag–CuxO Nanostructures, ACS Appl. Mater. Interfaces, 15 (2023).
  • [18] Carrillo J.-M.Y., Dobrynin A.V., Contact Mechanics of Nanoparticles, Langmuir, 28 (2012) 10881–10890.
  • [19] Wang H., Zhang W., Zeng S., Shen C., Jin C., Huang Y., Interactions between nanoparticles and fractal surfaces, Water Research, 151 (2019) 296–309.
  • [20] Besha A.T., Liu Y., Bekele D.N., Dong Z., Naidu R., Gebremariam G.N., Sustainability and environmental ethics for the application of engineered nanoparticles, Environmental Science & Policy, 103 (2020) 85–98.
  • [21] Saravanan A., Kumar P.S., Karishma S., Vo D.-V.N., Jeevanantham S., Yaashikaa P.R., George C.S., A review on biosynthesis of metal nanoparticles and its environmental applications, Chemosphere, 264 (2021) 128580.
  • [22] Kirubakaran D., Wahid J.B.A., Karmegam N., Jeevika R., Sellapillai L., Rajkumar M., SenthilKumar K.J., A Comprehensive Review on the Green Synthesis of Nanoparticles: Advancements in Biomedical and Environmental Applications, Biomedical Materials & Devices, (2025) 1-26.
  • [23] Wei F., Zhao X., Li C., Han X., A novel strategy for water disinfection with a AgNPs/gelatin sponge filter, Environ Sci Pollut Res, 25 (2018) 19480–19487.
  • [24] Queirós C.S.G.P., Cardoso S., Lourenço A., Ferreira J., Miranda I., Lourenço M.J.V., Pereira H., Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition, Biomass Conv. Bioref., 10 (2020) 175–188.
  • [25] Sahin F., Celik N., Ceylan A., Ruzi M., Onses M.S., One-step Green Fabrication of Antimicrobial Surfaces via In Situ Growth of Copper Oxide Nanoparticles, ACS Omega, 7 (2022) 26504–26513.
  • [26] Khan M.S.J., Kamal T., Ali F., Asiri A.M., Khan S.B., Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants, International Journal of Biological Macromolecules, 132 (2019) 772–783.
  • [27] Sahin F., Celik N., Camdal A., Sakir M., Ceylan A., Ruzi M., Onses M.S., Machine Learning-Assisted Pesticide Detection on a Flexible Surface-Enhanced Raman Scattering Substrate Prepared by Silver Nanoparticles, ACS Appl. Nano Mater., 5 (2022) 13112–13122.
  • [28] Elemike E.E., Onwudiwe D.C., Fayemi O.E., Botha T.L., Green synthesis and electrochemistry of Ag, Au, and Ag–Au bimetallic nanoparticles using golden rod (Solidago canadensis) leaf extract, Appl. Phys., A 125 (2019) 42.
  • [29] Meldrum F.C., O’Shaughnessy C., Crystallization in Confinement, Advanced Materials, 32 (2020) 2001068.
  • [30] Makvandi P., Wang C., Zare E.N., Borzacchiello A., Niu L., Tay F.R., Metal-Based Nanomaterials in Biomedical Applications: Antimicrobial Activity and Cytotoxicity Aspects, Advanced Functional Materials, 30 (2020) 1910021.
  • [31] Cheng D., Zhang Y., Liu Y., Bai X., Ran J., Bi S., Deng Z., Tang X., Wu J., Cai G., Wang X., Mussel-inspired synthesis of filter cotton-based AgNPs for oil/water separation, antibacterial and catalytic application, Materials Today Communications, 25 (2020) 101467.
  • [32] ISO 20743:2021, ISO (n.d.). https://www.iso.org/standard/79819.html (accessed March 8, 2025).
  • [33] Vaiwala R., Sharma P., Ganapathy Ayappa K., Differentiating interactions of antimicrobials with Gram-negative and Gram-positive bacterial cell walls using molecular dynamics simulations, Biointerphases, 17 (2022) 061008.
  • [34] Wang M., Li Z., Zhang Y., Li Y., Li N., Huang D., Xu B., Interaction with teichoic acids contributes to highly effective antibacterial activity of graphene oxide on Gram-positive bacteria, Journal of Hazardous Materials, 412 (2021) 125333.
  • [35] Modi S.K., Gaur S., Sengupta M., Singh M.S., Mechanistic insights into nanoparticle surface-bacterial membrane interactions in overcoming antibiotic resistance, Front. Microbiol., 14 (2023) 1135579.
  • [36] Mikhailova E.O., Green Silver Nanoparticles: An Antibacterial Mechanism, Antibiotics, 14 (2025) 5.
  • [37] Duman H., Eker F., Akdaşçi E., Witkowska A.M., Bechelany M., Karav S., Silver Nanoparticles: A Comprehensive Review of Synthesis Methods and Chemical and Physical Properties, Nanomaterials, 14 (2024) 1527.
  • [38] Yu Y., Zhou Z., Huang G., Cheng H., Han L., Zhao S., Chen Y., Meng F., Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: Recent advancements and critical challenges, Water Research, 222 (2022) 118901.
  • [39] Sukhorukova I.V., Sheveyko A.N., Shvindina N.V., Denisenko E.A., Ignatov S.G., Shtansky D.V., Approaches for Controlled Ag+ Ion Release: Influence of Surface Topography, Roughness, and Bactericide Content, ACS Appl. Mater. Interfaces, 9 (2017) 4259–4271.
  • [40] Saud A., Gupta S., Allal A., Preud’homme H., Shomar B., Zaidi S.J., Progress in the Sustainable Development of Biobased (Nano)materials for Application in Water Treatment Technologies, ACS Omega, 9 (2024) 29088–29113.
There are 40 citations in total.

Details

Primary Language English
Subjects Colloid and Surface Chemistry, Biomaterial , Materials Engineering (Other)
Journal Section Natural Sciences
Authors

Furkan Şahin 0000-0001-5409-3925

Publication Date June 30, 2025
Submission Date March 9, 2025
Acceptance Date June 15, 2025
Published in Issue Year 2025Volume: 46 Issue: 2

Cite

APA Şahin, F. (2025). Eco-Friendly and Durable Sponge with In Situ Formed Silver Nanoparticles for Antimicrobial Filtration. Cumhuriyet Science Journal, 46(2), 310-318. https://doi.org/10.17776/csj.1654366